
7th International
ERCIM Workshop on
Formal Methods for
Industrial Critical Systems
(FMICS’02)
University of Málaga, Spain
July 12-13, 2002

Rance Cleaveland, Hubert Garavel (Eds.)

Available as Technical Report ITI-2002-5
Dpto. de Lenguajes y Ciencias de la Computación

Universidad de Málaga

Local Organizing Commitee:
María del Mar Gallardo, Pablo López,

Jesús Martínez, Pedro Merino

Foreword

The aim of the FMICS workshops is to provide a forum for researchers who are interested in the
development and application of formal methods in industry. In particular, these workshops are intended to
bring together scientists who are active in the area of formal methods and interested in exchanging their
experiences in the industrial usage of these methods. These workshops also strive to promote research and
development for the improvement of formal methods and tools for industrial applications. Topics include,
but are not restricted to:

• Tools for the design and development of formal descriptions
• Verification and validation of complex, distributed, real-time systems and embedded systems
• Verification and validation methods that aim at circumventing shortcomings of existing methods in

respect to their industrial applicability
• Formal methods based conformance, interoperability and performance testing
• Case studies and project reports on formal methods related projects with industrial participation

(e.g. safety critical systems, mobile systems, object-based distributed systems)
• Application of formal methods in standardization and industrial forums

Previous workshops of the ERCIM working group on Formal Methods for Industrial Critical Systems were
held in Oxford (March 1996), Cesena (July 1997), Amsterdam (May 1998), Trento (July 1999), Berlin
(April 2000), and Paris (July 2001).

This year’s workshop is organized at the University of Málaga, immediately after the ICALP 2002
conference. It includes five sessions of regular contributions. We are also pleased to welcome three invited
presentations: Andreas Podelski, who discusses abstraction for software model checking, Andrew D.
Gordon, who investigates in authenticity types for cryptographic protocols and Wang Yi, who addresses the
issue of synthetizing verified real time software.

The proceedings of FMICS 02 are published both physically, as a technical report of the University of
Málaga, and electronically, in the ENTCS series (Electronic Notes in Theoretical Computer Science).

We wish to thank the members of the programme committee and the additional reviewers for their careful
evaluation of the submitted papers (13 papers have been selected out of 22 submitted). We are very grateful
to the local organizers at the University of Málaga, and especially Pedro Merino, for their excellent
assistance during the workshop preparation.

Finally, we would like to thank ERCIM and ICALP for their financial and organizational support of
FMICS 02. Our reviewing process benefited from the METAFrame Online Conference Service (courtesy of
METAFrame Technologies, which we would like to thank also for their technical support in setting and
running the service).

Rance Cleaveland, Hubert Garavel

June 2002

Keywords: Formal Methods, Formal Description Techniques, Modelling, Specification, Verification, Prototyping,
Testing, Software Development, Protocols, Safety Critical Software, Abstractions, Model Checking, Real Time.

Further information about the FMICS working group: http://www.inrialpes.fr/vasy/fmics

 i

 ii

Programme Committee

• T. Arts (Ericsson, S)
• M. Bernardo (Univ. of Urbino, I)
• R. Cleaveland, co-chair (SUNY and Reactive Systems, USA)
• W.J. Fokkink (CWI, NL)
• H. Garavel, co-chair (INRIA Rhone-Alpes, F)
• S. Gnesi (CNR/IEI Pisa, I)
• P. Godefroid (Bell Labs, USA)
• H. Hermanns (Univ. Twente, NL)
• T. Margaria (METAFrame Technologies, D)
• P. Merino Gómez, local organization chair (Univ. Málaga, E)
• I. Schieferdecker (GMD Berlin, D)
• S. Schneider (Royal Holloway, University of London, UK)
• M. Sighireanu (University of Paris-7 Jussieu, F)
• R. de Simone (INRIA Sophia Antipolis, F)
• U. Ultes-Nitsche (University of Southampton, UK)
• A. Valmari (Tampere University of Technology, Fi)
• W. Visser (RIACS/NASA Ames, USA)

Additional Reviewers

• Bahareh Badban
• Clara Benac Earle
• Tommaso Bolognesi
• Antonio Cerone
• Kousha Etessami
• Alessandro Fantechi
• Natalia Ioustinova
• Frederic Lang
• Izak van Langevelde
• Michael Leuschel

• Pablo Lopez
• Cecilia Mascolo
• Mieke Massink
• Radu Mateescu
• Simona Orzan
• Jun Pang
• Laurence Pierre
• Simon St James
• Laurent Thery
• Mikko Tiusanen

Local Organizing Committee

Software Engineering Group, University of Málaga

• M. del Mar Gallardo
• P. López
• J. Martínez
• P. Merino, local organization chair

 iii

Table of Contents

INVITED PRESENTATION

Abstraction for Software Model-Checking……………………………………....…………...…..1
Andreas Podelski (Max-Planck Institut für Informatik, Germany)

SESSION 1 - ABSTRACTION AND MODEL-CHECKING

Predicate Abstraction and Refinement for Model Checking VHDL State Machines……..... …....3
M. Bourahla, M. Benmohamed

A Tool for Abstraction in Model Checking…………………………………………………........19
M. del Mar Gallardo, J. Martinez, P. Merino, E. Pimentel

SESSION 2 - TESTING

Validation and Automatic Test Generation on UML Models: The AGATHA Approach…….......35
D. Lugato, C. Bigot, Y. Valot

Heuristic-Driven Techniques for Test-Case Selection………............……………………...........51
J.C. Burguillo, M. Llamas, M.J. Fernández, T. Robles

Scalable System-level CTI Testing through Lightweight Coarse-grained Coordination……........67
T. Margaria, B. Steffen

INVITED PRESENTATION

Authenticity Types for Cryptographic Protocols..85
Andrew D. Gordon (Microsoft Research, Cambridge, UK)

SESSION 3 - INDUSTRIAL CASE STUDIES I

A Methodological Process for the Design of a Large System: Two Industrial Case-Studies.........87
N. Lopez, M. Simonot, V. Donzeau-Gouge

Automatic Verification of the IEEE-1394 Root Contention Protocol with KRONOS
and PRISM……………………………………………………………………….………….......107
C. Daws, M. Kwiatkowska, G. Norman

 iv

 v

INVITED PRESENTATION

Synthesis of Verified Real Time Software……………………………….......….......………….123
Wang Yi (Uppsala University, Sweden)

SESSION 4 - INDUSTRIAL CASE STUDIES II

Specification and Analysis of the MPEG-2 Video Encoder with Timed-Arc Petri Nets…........125
V. Valero, F.L. Pelayo, F. Cuartero, D. Cazorla

Properties of the Subtraction Valid for any Floating Point System…………………...…....….137
S. Boldo, M. Daumas

SESSION 5 - MODEL CHECKING

Simple and Efficient Translation from LTL Formulas to Buchi Automata…………………....151
X. Thirioux

Liveness Checking as Safety Checking……………………………………………………......167
A. Biere, C. Artho, V. Schuppan

Stuttering-Insensitive Automata for On-the-Fly Detection of Livelock Properties……...…....185
H. Hansen, W. Penczek, A. Valmari

Context-Sensitive Visibility…………………………………………………………………....201
A.Valmari, H. Virtanen, A. Puhakka

Andreas Podelski (Max-Planck-Institut, Germany)

Abstraction for Software Model Checking

based on joint work with Tom Ball and Sriram Rajamani (Microsoft Research, Redmond
WA, USA), and Andrei Rybalchenko (Max-Planck-Institut, Germany)

A program with variables over unbounded data domains (e.g. integers) generates an
infinite-state transition system. Thus, one approach to extend model checking to software
works by mapping an infinite-state transition system to a finite one. We explain the
limitations of that approach and show how one can go beyond. We present a whole
spectrum of abstractions with different precision/cost trade-off's. In order to automatize
software model checking, we combine the automated process of abstraction with an
automated process to make the abstraction more and more precise (namely until the
property can be proven in the abstract). We present new ideas on parametrizing such an
`abstraction refinement' process.

References

T. Ball, A. Podelski, and S. Rajamani. Relative Completeness of Abstraction Refinement
for Software Model Checking. In Proceedings of TACAS 2002, LNCS 2280, pages 158-
172.

 1

 2

Bourahla and Benmohamed

Predicate Abstraction and Refinement for
Model Checking VHDL State Machines

Mustapha Bourahla

Computer Science Department, University of Biskra
BP 145 RP, Biskra, Algeria, 07000
Email: mbourahla@hotmail.com

Mohamed Benmohamed

Computer Science Department, University of Constantine
Constantine, Algeria, 25000

Abstract

In this paper we present an automatic combination of abstraction-refinement by
which we translate a VHDL model describing a state system to an initial equivalent
abstract system described by SMV to explore its state space to verify CTL proper-
ties. We present the method implemented to compute automatically abstractions
using decision procedures. This method can handle different kinds of infinite state
systems including systems composed of concurrent components and it can be ex-
tended for more complex VHDL concepts. Abstract models may admit spurious
counterexamples (false negative results) which are executions at the abstract level
with no corresponding executions at the concrete level. We devise a new algorithm
which analyzes such counterexamples and refine the abstract model correspondingly
by eliminating gradually the false negative results. We illustrate our approach on
an example and we confirm its effectiveness on a large design.

1 Introduction

The main idea of abstract interpretation of digital systems, is to interpret the
behavior of a system in a different abstracted (and therefore simplified) system
with fewer states for handling the state explosion problem in applying model
checking to large industrial designs. An abstraction can be seen as a relation
between two systems. On one hand, the original system has the complete
description of its behavior, whereas its abstraction preserves some of that be-
havior and abstracts the rest. The verification task is then performed in the
abstracted system. There are two types of abstractions: exact abstractions
are those where the result of the verification in the abstract system implies an

c©2002 Published by Elsevier Science B. V.

Bourahla and Benmohamed

equivalent result in the concrete system. In the case of conservative abstrac-
tions, on the other hand, only certain results in the verification of the abstract
system can be implied in the original system.

Verification by abstraction appears to be promising for reasoning about
control intensive designs in which control is finite but the data part is infinite
or very large [9] [10]. Abstract models are usually provided manually, and the-
orem proving is used to check that the provided abstract mapping preserves
the properties. Recently, novel techniques based on abstract interpretation
have been proposed in the context of the verification of temporal properties
where theorem proving is used to compute automatically finite abstractions
[2] [7] [8]. These techniques are quite effective, but require heavy use of theo-
rem proving and decision procedures. There are methods/tools that compute
an abstract system from the text of a finite state program and an abstraction
relation [6]. It should be realized that it is important to avoid the construc-
tion of the concrete model which represents the semantics of the considered
program before generating the abstract system. Otherwise, one would have to
store the concrete system which might be too large. The produced abstract
system is usually smaller than the concrete one, and hence is much simpler to
model-check.

Verification by abstraction can also be applied to infinite state systems as
shown in [12]. However, in all these approaches the verifier has to provide the
abstract system and an important amount of user intervention is required to
prove that the abstract system simulates the concrete one. What is needed
is a method to automatically compute an abstract system for a given infinite
state system and an abstraction relation. A method that achieves this for
a restricted form of abstraction functions, namely those induced by a set of
predicates on the concrete states, is given in [14]. This method has, however,
the drawback that it generates an abstract graph rather than the text of an
abstract program with the consequence that one can neither apply further
abstractions nor techniques for avoiding the state explosion problem as, for
example, partial-order techniques. There is another method [3] based on elim-
ination during the construction of abstract systems. Then, to construct an
abstract transition of a concrete transition starting from the universal rela-
tion, which relates every abstract state to every abstract state, this method
eliminates pairs of abstract states such that after elimination of a pair the ob-
tained transition is still an abstraction of the concrete transition. This method
is too complex because the number of transitions of the universal relation is
exponential in the number of variables. This method was combined with other
techniques based on partitioning the set of abstract variables, using substitu-
tions but this partitioning leads to a more non-deterministic abstract system
and then more spurious counterexamples.

The drawback of using abstraction followed by model checking as a ver-
ification and analysis technology consists in the fact that abstractions are
approximations of the original systems that induce false negative results. For

4

Bourahla and Benmohamed

instance, a model checker may exhibit an error trace that corresponds to an
execution of the abstract program that violates the desired properties. How-
ever, this error trace may not correspond to an execution trace in the concrete
program. This situation indicates that the abstraction is too coarse, and that
the results of model checking the abstract system are not conclusive. That is
too many details were abstracted and the abstraction needs to be refined.

We propose a method for the automatic construction of predicate abstrac-
tions extracted from VHDL models to abstract infinite transition systems such
that the abstract model by construction simulates the concrete system. These
systems can be composed of concurrent components. But the process of con-
structing the abstract system does not depend on whether the computational
model is synchronous or asynchronous, i.e., interleaving based. In general, our
technique computes an upper approximation of the original system. Thus,
when a specification is true in the abstract model, it will also be true in the
concrete design. However, if the specification is false in the abstract model,
the counterexample may be the result of some behavior in the approximation
which is not present in the original model. When this happens, it is necessary
to refine the abstraction. Our method differs from that in [3], so that only the
last behavior which caused the spurious counterexample is eliminated. Clarke
[6] has presented other technique in another framework of abstraction based
on abstraction from a concrete model, but when a spurious counterexample
is present, to get a refined abstract model his method eliminates all the non
reachable states in the spurious counterexample by using comparison with the
behavior of the concrete model. This also costs time and it is not necessary.

The VHDL models are written using a subset of the language [19] and a
certain modeling style taken from the most synthesis tools. The VHDL model
states are represented symbolically and the abstract state is a conjunction of
one of these states and truth assignment to the abstract Boolean variables.
The false negative results will be gradually eliminated by an automatic process
called refinement which uses information obtained from spurious counterexam-
ples. The verification methodology is based on abstraction followed by model
checking and refinement. If there is no possible refinement, the system will
report counterexamples by mapping each step in the trace to the concrete do-
main. We have used an example to explain our method which is implemented
to automatically construct the abstract systems.

This paper is organized as follows: Section 2 presents modeling style of
transition systems with VHDL. In Section 3, we present the framework of
predicate abstraction used by our algorithm of abstraction presented in Section
4. Section 5 presents the algorithm of refinement. An overview of the tool
and analysis of results are presented in Section 6. At the end a conclusion is
given.

5

Bourahla and Benmohamed

2 Modeling Transition Systems with VHDL

Hardware Description Languages (HDLs), most notably VHDL, have gained
considerable popularity in the specification of hardware designs. VHDL sup-
ports process level parallelism. It employs constructs with complicated se-
mantics to achieve concurrency, communication and synchronization among
the processes [19]. VHDL constructs such as signal assignment statements and
wait statements facilitate deterministic inter process communication and coor-
dination. One can exploit these features of VHDL to write succinct behavioral
descriptions.

Definition 2.1 (transition system). A transition system M is a tuple M =
(S, V, T, I), where

• S is a set of system states

• V is a set of system variables of any type

• T is a set of system transitions, each transition is associated with a guard
expression and a set of action expressions over the set V

• I is a set of initial states

VHDL is a language particularly adapted to the description of transition
systems because of its high level syntax (instructions if ... then ... else, case ...
when) which allows direct translations of traditional graphic representations
like graphs and diagrams. With the VHDL syntax, we can name the states, the
signals, etc. This gives us a clear and readable descriptions. For abstraction
we have chosen a subset of VHDL to describe transition systems. A transition
system can be composed of one behavioral component or many concurrent
components. Each component is described by one process. The variables of
the transition system can be of any type: Boolean, bit, integer, real, etc.,
and the states are represented symbolically. A directive is introduced to write
the CTL formulas to be checked over the VHDL model. We illustrate our
verification approach on the well known algorithm that computes the GCD
(Great Common Divider) of two natural numbers x and y. The transitions
are of the form condition/action, with the meaning that the transition takes
place if condition is true, and then action is executed. The VHDL model of
GCD is shown in Figure 1 (”<=” is the VHDL assignment operator) .

entity GCD is port(clk : in bit; x, y : in integer;
start : inout bit; z : out integer);

end entity GCD;
architecture Behavior of GCD is

Type State is (S0, S1, S2);
Signal S : State := S0; Signal xp, yp : natural;

begin
process begin wait until Clk = ’1’;

case S is

6

Bourahla and Benmohamed

when S0 =>
if start = ’0’ then S <= S0 end if;
if start = ’1’ then xp <= x; yp <= y; S <= S1; end if;

when S1 =>
if xp < yp then yp <= yp - xp; S <= S1; end if;
if xp > yp then xp <= xp - yp; S <= S1; end if;
if xp = yp then Z <= xp; S <= S2; end if;

when S2 => Start <= ’0’; S <= S0
end case;

end process;
-- $ AG(Start = ’1’ -> AF(xp = yp))

end behavior;

Fig. 1. VHDL model of GCD and property specification

3 Framework of Predicate Abstractions

Predicate abstraction consists of using predicates over concrete variables as
Boolean abstract variables [14]. It can be defined in the framework of abstract
interpretation using Galois connections.

Definition 3.1 (Abstraction by Galois Connection). Let Sc and Sa represent
the concrete and abstract state domains respectively. A Galois connection [2]
from Sc to Sa is a pair of functions α : 2Sc → 2Sa and γ : 2Sa → 2Sc such that:

• α and γ are total and monotonic.

• ∀X ∈ 2Sc , γoα(X) ⊇ X, and

• ∀X ∈ 2Sa , αoγ(X) ⊇ X.

Theorem 3.2 (Relation between connection and simulation). Let Rc and Ra

represent the transition relations of M c and Ma respectively. If (α, γ) is
a connection between Sc and Sa and ∀S ′ ∈ 2Sa, then α(Pre(Rc, γ(S ′))) ⊆
Pre(Ra, S

′) then M c � Ma, where Pre is the pre image function.

If P is a predicate over concrete variables, a predicate abstraction can be
expressed as a Galois connection [14] as follows:

α(P) =
∧{Ba|P ⇒ γ(Ba)} = P a,

where Ba is any Boolean expression over the set {B1, ..., Bk} which is the set of
abstract variables corresponding to the set of concrete predicates {φ1, ..., φk}.
γ is defined as a substitution function, that is, γ(P a) = P a[φ1/B1, ..., φk/Bk],
where each Boolean variable Bi is substituted by its corresponding correct
predicate φi. Thus, the abstraction of a concrete set of states represented
by a predicate P over concrete variables is defined as the smallest Boolean
formula P a over the abstract variables Bi, that is, an over approximation of
P . For computing the most precise Boolean abstraction with respect to a set

7

Bourahla and Benmohamed

of predicates, for systems where the transition relation is given as a relational
predicate, an efficient enumeration of all Boolean combinations Ba to test the
assertion P ⇒ γ(Ba) should be specified. This will abstract systems where
the transition relation is given as a predicate. Each implication P ⇒ γ(Ba)
is submitted to the decision procedure to test its validity. Notice that any
approximation of P a is a valid abstraction of P .

Thus, in order to compute for a concrete system M , an abstract system
Ma, it is sufficient to abstract the initial state I by computing α(I), and to
abstract each transition t ∈ T as follows:

ta = α(t) = α(actiont(V, V ′)) =
∧{(Ba, Ba′

)| 	 post[t](γ(Ba)) ⇒ γ(Ba′
)},

that is, the pair (Ba, Ba′
) characterizing the abstraction of the set of possible

predecessors by t and the abstraction of the set of possible successors by
t, where post expresses the strongest post condition by a transition t of a
predicate P over the state variables of V , it is defined as follows:

post[t](P) = ∃V ′.actiont(V
′, V) ∧ P (V ′),

where actiont(V
′, V) is defined as the relation between the current state and

next state, that is the expression:

(s = si) ∧ guard ∧
l∧

i=1

(v
′
i ⇐ ei) ∧ (next(s) = sj)

The preservation of properties expressed in temporal logic is established via
equivalences and preorders between the concrete and abstract models.

Theorem 3.3 (weak preservation). Let M be a concrete system, and let Ma

be a predicate abstraction of M using any set of predicates. We have Ma |=
α(φ) ⇒ M |= φ, for each temporal formula φ.

Proof. All the executions of M are executions of Ma, then if a property holds
along all execution paths of Ma, it holds in all execution paths of M . This
means that Ma simulates M , because the following holds for each transition
t of M :

∀P.post[t](P) ⇒ γ(post[α(t)](α(P))). �

This theorem indicates that when a property is established in the ab-
stract system, its corresponding concrete property holds in the concrete sys-
tem. However, nothing can be concluded when the property does not hold in
the abstract system. Strong preservation results can be applied in this case
under some conditions.

Theorem 3.4 (strong preservation). Let M be a concrete system, and let
Ma be a predicate abstraction of M using any set of predicates that includes
all the literals appearing in the guards of M and in the property φ. If Ma is
deterministic, we have Ma |= α(φ) ⇔ M |= φ, Ma and M are equivalent.

You can find its proof in [14]. The strong preservation result allows us

8

Bourahla and Benmohamed

to avoid false negative results by mapping abstract error traces to concrete
executions violating the property. However, the condition for strong preser-
vation requires that Ma be deterministic. This is usually not the case. Each
abstract state is then a conjunction of a subset of the set of Boolean variables
which are the codes of the finite abstract domain. The concretization of an
abstract state is a set of concrete states that can be represented as a predi-
cate. We have used these notions of predicate abstractions to automatically
abstract transition systems described with VHDL. The next section presents
the algorithm and illustration on the example of GCD.

4 Automatic Construction of Predicate Abstractions

The algorithm uses decision procedures for the automatic construction of a
predicate abstraction of a concrete, infinite state system described as a transi-
tion system with VHDL. The abstraction of a concrete system M = (S, V, T =
{t1, ..., tn}, I) is an abstract system Ma = (S, V a, T a = {ta1, ..., tan}, Ia) such
that:

• V a is the set {B1, ..., Bk}
• T a is a set of abstract transitions.

• Ia is the abstract initial state computed as α(I).

The abstraction algorithm consists in computing Ia and for each concrete
transition t defined as (s = si)∧guard∧action∧(next(s) = sj) a corresponding
abstract transition ta defined as (s = si) ∧ guarda ∧ actiona ∧ (next(s) = sj)

Algorithm 1 Abstraction
Step 1: Define the abstraction function α using the predicates in the transition
guards and the CTL formula. The function γ is the corresponding substitution
function.
Step 2: For each guard, the abstract guard (guarda) is computed as α(guard).
When using the literals of the guards as abstract Boolean variables, α(guard) is
an exact abstraction, where each literal of guard is substituted syntactically by its
corresponding abstract Boolean variable.
Step 3: Construction of a list L of all the Boolean expressions Ba of the form∧

(Bi/¬Bi) using the abstract variables.
Step 4: The action assignments of each transition will be abstracted to a Boolean
expression composed of maximum number of abstract variables and it should validate
the implication:

post[t](true) ⇒ γ(the abstract Boolean expression).

The ”abstract Boolean expression” is a conjunction of all the Boolean expressions
Ba taken from the list L, where the implication post[t](true) ⇒ γ(Ba) is valid.
This means that for each abstract variable Bi in this expression, the strongest post
condition by t of any arbitrary state is in γ(Bi) or in ¬γ(Bi), that is, in φi or in ¬φi.
If the abstract variable is not in the expression this means that is not deterministic.
Step 5: The variable S is not abstracted since it is of finite type.

9

Bourahla and Benmohamed

4.1 Illustration on the Example

We use predicates over concrete variables which are extracted from the VHDL
model, as Boolean abstract variables. The transition table generated after the
parse of the VHDL model (Figure 1), is shown on Table 1.

N Present State Guard Action Next State Guarda Actiona

1 S0 Start = 0 Empty S0 B1 Empty

2 S0 Start = 1 xp := x; yp := y S1 ¬B1 Empty

3 S1 xp < yp yp := yp - xp S1 B2 Empty

4 S1 xp > yp xp := xp - yp S1 B3 Empty

5 S1 xp = yp z := xp S2 ¬B2 ∧ ¬B3 Empty

6 S2 True Start := 0 S0 true B1 := true

Table 1
Transition table of the GCD

The columns Guarda and Actiona are filled in after the abstraction. First,
we compute the abstract initial state. The VHDL model contains one initial-
ization statement (S := S0), this will not be abstracted. Then, the abstract
initial states are any state verifying the formula (S = S0). Second, we com-
pute the abstract guards of all the transitions along with the specification
predicates. The set of predicates presented in the column Guard with the
set of predicates generated from the CTL formulas presented by the directive
--$ (in this case, the set is {Start =′ 1′, xp = yp}), will be the entry to the
abstraction algorithm for producing the set of abstract Boolean variables and
the equivalent abstract predicate of each concrete predicate using a decision
procedure. The algorithm will take the predicates in the Guard column one
by one and it will try to express them with the already constructed abstract
variables. If it is not possible, it decomposes the predicate to simpler pred-
icates (by simpler, we mean removing the Boolean connectors) and then, it
associates a new abstract variable to one of them which is not already as-
sociated and then it will retry the process until the predicate is completely
expressed with the constructed abstract variables. We will repeat the process
until all the predicates can be expressed with abstract variables.

If the set of abstract variables for our example is {B1 for (start = 0), B2 for
(xp < yp), and B3 for (xp > yp)}, this means that the abstraction function
α is defined by the predicate (B1 ↔ (start = 0)) ∧ (B2 ↔ (xp < yp)) ∧
(B3 ↔ (xp > yp)), then we need to represent all the guard predicates with
the minimum of abstract variables using calls to a decision procedure. The
abstract guard of transition number 3 (see Table 1), for instance, is ¬B2∧¬B3
because the implication ((xp = yp) ⇒ γ(¬B2 ∧ ¬B3)) is checked to be valid.

Third, we compute the abstraction for each assignment in the action of
each transition. The assignments are in the Action column. We need to re-
alize a conjunction of the maximum number of abstract variables (or their

10

Bourahla and Benmohamed

negations) to abstract these assignments such that, the following implication
”assignment of transition action ⇒ γ(conjunction of the maximum number
of Boolean abstract variables)” should be valid. These implications will be
checked by calls to a decision procedure. The abstraction of an action is the
conjunction of all the abstractions of its assignments. After the construction
of all the abstract predicates, a translation program will generate the equiv-
alent SMV module (Figure 2). The SMV system [20] is a tool for checking
finite state systems against specifications in the temporal logic CTL.

Module main
VAR

B1 : boolean; B2 : boolean; B3 : boolean;
S : {S0, S1, S2};

INIT
S = S0

TRANS
(S = S0 & B1 & next(S) = S0) | (S = S0 & !B1 & next(S) = S1) |
(S = S1 & B2 & next(S) = S1) | (S = S1 & B3 & next(S) = S1) |
(S = S1 & !B2 & !B3 & next(S) = S2) |
(S = S2 & next(B1) & next(S) = S0)

INVAR
(B2 & !B3) | (!B2 & B3) | (!B2 & !B3)

SPEC
AG(!B1 -> AF(!B2 & !B3))

Fig. 2. SMV Abstract model

4.2 Invariant Generation

In the SMV module (Figure 2), there is an invariant. The invariant is a formula
representing a set of states and each state reachable in the system, is in this set.
The invariant formula is to make consistence between the abstract Boolean
variables already generated so that to not get a state in which there will not
be a formula making no sense, and then avoiding the system to reach useless
states. By example there will not be any concrete state verifying the formula
B2 ∧ B3 (its equivalent in the concrete domain is ”(xp > yp) ∧ (yp > xp)”).
The idea of the following algorithm is to check if not (B2∧B3) is a tautology.
If yes, this combination will be removed from the invariant formula.

Algorithm 2 Invariant Generation

Consider B is the set of abstract Boolean variables
Consider P is the set of the equivalent predicates
Consider PS is the set of subsets from P , where predicates of each
element from PS, are using the same subset of concrete variables
Consider BS is a set of subsets from B, where each Bj ∈ B is an abstract of
one of PS

i from PS

11

Bourahla and Benmohamed

Invariant ← true
for each BS

j from BS and if BS
j contains more than one element do

for (every conjunction C of all Bj or not Bj in BS
j) do

if not valid(not γ(C)) then
Invariant ← Invariant ∧C

end if
end for

end for

The algorithm first, searches the abstract Boolean variables that are abstrac-
tions of concrete predicates using the same concrete variables and grouping
them in clusters of variables. Then the algorithm will try to check all the
conjunctions composed of these clusters of variables. If the negation of the
equivalent conjunction in the concrete domain, is checked to be a tautology,
it will not be inserted in the invariant formula. We should remark that the
invariant can be true (empty).

4.3 Model Checking the Abstract Model

Once an abstract system is constructed, the SMV model checking system is
used to explore its state-space. The advantage of model checking over other
verification techniques is its ability to generate counterexamples when a prop-
erty is violated. The error trace is a sequence of states and transitions starting
from the initial state of the system leading to a state violating the property.
Error traces of an abstract system can be mapped to executions of a concrete
system since each abstract transition corresponds to a single concrete one.
Figure 3 shows an error trace which is a spurious loop counter example vio-
lating the property specified.

¬B1 ∧ ¬B2 ∧ ¬B3 ∧ (S = S0) ¬B1 ∧ ¬B2 ∧ B3 ∧ (S = S1)

Fig. 3. Error trace

The simulation of the error trace on the concrete system indicates that it
does not correspond to an execution of the concrete system. However, this
does not rule out the possibility that the property is violated. In the next
section, we present an algorithm to show how model checking can guide the
automatic refinement of an abstract system until the property is verified or a
counterexample corresponding to a concrete execution violating the property
is generated.

5 Automatic Refinement of Abstractions

The specification above is not satisfied by the initial abstract system already
constructed. The system SMV produced an error trace indicating the violation

12

Bourahla and Benmohamed

of this specification (Figure 3). By analysis of this error trace, we understand
that the abstract system is executing a trace which can not be executed in
the concrete system. The abstract system is too abstract and it needs to be
refined. Effectively, the transition number 4 (see Table 1) is defined by the
formula (S = S1 ∧ B3 ∧ next(S) = S1). The Boolean variable B3 can get
the next value true or false which is not deterministic, but in the concrete
system the next value of (xp > yp) will eventually get the value false. Figure
4 shows the different counterexamples (A, B and C) generated after each step
in the refinement process of this module until the satisfaction of the specified
liveness property.

A¬B1 ∧ ¬B2 ∧ ¬B3 ∧ (S = S0)

¬B1 ∧ ¬B2 ∧ B3 ∧ (S = S1)

¬B1 ∧ B2 ∧ ¬B3 ∧ (S = S1)

B¬B1 ∧ ¬B2 ∧ ¬B3 ∧ (S = S0)

¬B1 ∧ B2 ∧ ¬B3 ∧ (S = S1)

C¬B1 ∧ ¬B2 ∧ ¬B3 ∧ (S = S0)

¬B1 ∧ ¬B2 ∧ ¬B3 ∧ (S = S1)

¬B1 ∧ ¬B2 ∧ B3 ∧ (S = S2)

B1 ∧ ¬B2 ∧ B3 ∧ (S = S0)

AG(!B1− > AF (!B2&!B3))

is true

Fig. 4. Error traces generated by model checking different levels of refinement

Thus, we have model checked four abstract models produced gradually by
refinement from the initial abstract model (Figure 2), until the property is
verified. In the following and before presenting our algorithm of refinement,
we will explain our method of refinement on this example. We take the formula
of the last transition te in the error trace (see Figure 3)

te ≡ (S =
S1)∧¬B1∧¬B2∧B3∧¬next(B1)∧¬next(B2)∧next(B3)∧ (next(S) = S1)

By mapping to the abstract transition system already we have (the initial
abstract model), the equivalent abstract transition ta, is (see Figure 2)

ta ≡ (S = S1) ∧ B3 ∧ (next(S) = S1)

This transition formula should verify the equality te∧ ta = te to be considered.
In our approach we take only the abstract variables that are used in the
abstraction of predicates composed of concrete variables used by the action
of the transition tc, which has ta as its abstract transition (in this case they
are B2 and B3). Then, we take one abstract variable (for example, B3).
The predicate next(B3) is in te (because, te ∧ next(B3) = te) and it is not
in ta, because ta ∧ next(B3) �= ta. Then we should check the validity of

13

Bourahla and Benmohamed

actiontc ⇒ γ(B3). In other words the following implication should be valid
(xp = xp − yp) ⇒ (xp > yp). But, the decision procedure does not valid
this, and because it causes an error in the model, we may use its negation
to avoid it and the transition will be written like the following for the new
refined abstract model.

(S = S1 ∧ B3 ∧ ¬next(B3) ∧ next(S) = S1)

When we model check this modified abstract module, we get another error
trace (Figure 4 A) and the formula of the last transition te in the new error
trace is

te ≡ (S =
S1∧¬B1∧¬B2∧B3∧¬next(B1)∧ next(B2)∧¬next(B3)∧ next(S) = S1)

The equivalent transition in the current abstract model ta, is

ta ≡ (S = S1 ∧ B3 ∧ ¬next(B3) ∧ next(S) = S1)

This is the abstract transition already modified. Now we apply the same
rule as above and the abstract variable B2 will be taken. The predicate
next(B2) is not occurring in the current transition so we have to validate
(xp = xp − yp) ⇒ (yp > xp) which is also invalid and it can be eliminated
from the abstract system. The transition of the second refined abstract model
should be written now like this

(S = S1 ∧ B3 ∧ ¬next(B2) ∧ ¬next(B3) ∧ next(S) = S1).

There still an error (Figure 4 B), and its trace gives the formula of the last
transition

te ≡ (S = S1 ∧ B2 ∧ ¬B3 ∧ next(B2) ∧ ¬next(B3) ∧ next(S) = S1)

This formula modifies by the same way, the transition

ta ≡ (S = S1 ∧ B2 ∧ next(S) = S1) to be
(S = S1 ∧ B2 ∧ ¬next(B2) ∧ next(S) = S1)

Now the error trace (Figure 4 C) gives the formula

te ≡ (S = S0∧B1∧¬B2∧B3∧next(B1)∧¬next(B2)∧next(B3)∧S = S0)

The equivalent transition in the current abstract system is

ta ≡ (S = S0 ∧ B1 ∧ S = S0).

There is no action for this transition, so we can take one of the abstract
variables B1, B2, or B3. For example, we take B1 and the new transition of
the refined abstract model is (the implication true ⇒ γ(B1) is not valid)

(S = S0 ∧ B1 ∧ ¬next(B1) ∧ S = S0).

Therefore, this last refined abstract model verifies the specification.

14

Bourahla and Benmohamed

5.1 Refinement Algorithm

After this execution of refinement process on the example, we present our
detailed algorithm. This algorithm will be called every time we get an error
trace path after model checking an abstract model. The algorithm does not
introduce new predicates. It refines the transitions without adding states, so
this method of refinement is for liveness and reachability properties.

Algorithm 3 Refinement

Let P to be the path of the abstract error trace
While P is not empty do

Let te to be the formula of the last transition in the abstract error trace
and ta is the corresponding transition in the abstract model,
which is verifying the equality ta ∧ te = ta

Let A to be the set of abstract variables of concrete predicates using
concrete variables occurring in the action of the equivalent concrete
transition tc of ta

while A is not empty do
take v from A
if (next(v) ∧ te = te) and (next(v) ∧ ta �= ta) and not

Valid(actiontc ⇒ γ(v)) then
Refine the abstract model by changing ta to be ta ∧ ¬next(v)
and return

elseif (¬next(v) ∧ te = te) and (¬next(v) ∧ ta �= ta) and not
Valid(actiontc ⇒ ¬γ(v)) then
Refine the abstract model by changing ta to be ta ∧ next(v)
and return

end if
end while
P := P - last abstract state

end while
There is no possible refinement then, output the concrete counterexample after
mapping the abstract error trace.

Thus, the main idea of this algorithm is to search the non deterministic ab-
stract variables in the last abstract transition in the error trace. Then it takes
these variables one by one to negate their next value which gives a refined
abstract model (it is an under approximation). If such variables don’t exist
it will go backward until the first transition. At the end if there are no de-
terministic variables, the concrete counterexample will be produced using the
function γ.

6 Overview and Experiments

Figure 5 shows an overview of the tool implementing our methodology based
on abstraction - model checking - refinement which is dedicated to the verifi-
cation of infinite state systems.

15

Bourahla and Benmohamed

Refinement Mapping error trace Concrete error trace

Symbolic model checking Property satisfied

Abstract system Abstraction
Internal

representation

Parser

VHDL description

Fig. 5. Overview of the tool

We have implemented this tool under the operating system Windows and
we have used the decision procedure of the system SVC (Stanford Validity
Checker) [1] [16] to prove theorems. After the execution of the abstraction
process we call the system SMV to model check the produced abstract model.
If there is a counterexample we call the refinement process as explained above
to produce a refined new abstract model in the case if the counterexample is
spurious.

In addition to the GCD example, we have used this system to verify the
mutual exclusion property (this is a safety property but no refinement was
needed) in the Bakery protocol, and by which we have tested the inter-process
communication with VHDL and its equivalent in the system SMV. The Bak-
ery protocol is composed of many parallel components each one is represented
by a VHDL process. We have also verified the ATM (Asynchronous Transfer
Mode) switch [5]. This is relatively a large design and it uses many compo-
nents. The table below shows our experiments with the three designs. The
table shows the number of abstract variables used. It shows the number of
implications generated and proved for each abstraction. Also the number of
refinements, and the global time of verification.

Case # of abstract variables # of calls to decision procedure # of refinements Time (s)

GCD 3 18 4 2

Bakery 3 33 0 1.5

ATM 17 254 8 35

Table 2
Experiment results

16

Bourahla and Benmohamed

7 Conclusion

We have presented a novel abstraction refinement methodology for symbolic
model checking VHDL models describing state machines, which can be infinite
transition systems. The methodology which is implemented by a completely
automatic tool, consists of an algorithm for the automatic construction of
predicate abstraction by which we translate a VHDL model to an equivalent
abstract SMV model, and an efficient algorithm for automatically refining
a coarse abstraction when model checking the abstract system fails. This
refinement algorithm eliminates gradually the spurious paths in the error trace.
The construction of the initial abstract system and the refinement process use
many calls to the decision procedure. The choice of non deterministic abstract
variables in the refinement algorithm has big effect on its performance and
good heuristics for their selection will approve it.

References

[1] C. Barret, D. Dill, and J. Levitt. Validity checking for combinations of theories
with equality. In Mandayam Srivas and Albert Camilleri, editors, Formal
Methods in Computer-Aided Design (FMCAD ’96), volume 1196 of Lecture
Notes in Computer Science, pages 187-201, Palo Alto, CA, November 1996.
Springer-Verlag.

[2] S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis. Property preserving
simulations. In CAV’92, pages 251-263, 1992.

[3] S. Bensalem, Y. Lakhnech, and S. Owre. Computing abstractions of infinite
state systems compositionally and automatically. In Hu and Vardi [HV98], pages
319-331, 1998.

[4] S. Bensalem, Y. Lakhnech, and H. Saidi. Powerful techniques for the
automatic generation of invariants. In R. Alur and T.A. Henzinger, editors,
8th International Conference on Computer Aided Verification, volume 1102 of
Lecture Notes in Computer Science, pages 323-335. Springer-Verlag, 1996.

[5] T. Chaney, J.A. Fingerhut, M. Flucke, and J. Turner. Design of a gigabit
ATM switching system. Technical Report WUCS-96-07. Computer Science
Department, Washington university, St. Louis, Missouri, 1996.

[6] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Emerson and A. P. Sistla, editors, Computer-Aided
Verification, Lecture Notes in Computer Science. Springer-Verlag, 2000.

[7] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems, 16(5)1512-1542,
1994.

[8] M.A. Colon and T.E. Uribe. Generating finite-state abstractions of reactive
systems using decision procedures. In Hu and Vardi, pages 293-304, 1998.

17

Bourahla and Benmohamed

[9] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
4th ACM symp. of Prog. Lang. Pages 238-252. ACM Press, 1977.

[10] D. Dams. Abstract interpretation and partition refinement for model checking.
PhD thesis, Technical University of Eindhoven, 1996.

[11] D. Dams, R. Gerth, G. Dohmen, R. Herrmann, P. Kelb, and H. Pargmann.
Model checking using adaptive state and data abstraction. In D.L. Dill, editor,
CAV’94, pages 455-467. Springer-Verlag, Berlin, 1994. LNCS 818.

[12] S. Das, D.L. Dill, and S. Park. Experience with predicate abstraction. In
Halbwachs and Peled [HP99], pages 160-171, 1999.

[13] J. Dingel and Th. Filkorn. Model checking for infinite state systems using data
abstraction. In P. Wolper, editor, Computer Aided Verification, volume 939 of
LNCS, pages 54-69. Springer-Verlag, 1995.

[14] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In
Computer Aided Verification, volume 1254 of Lecture Notes in Computer
Science, 1997.

[15] R.P. Kurshan. Computer-Aided Verification of coordinating processes.
Princeton university press, Princeton, NJ, 1994.

[16] J.R. Levitt. Formal verification techniques for digital systems. PhD thesis,
Stanford university, December 1998.

[17] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property
preserving abstractions for the verification of concurrent systems. Formal
Methods in System Design. 6(1), 1995.

[18] D. E. Long. Model Checking, Abstraction and Compositional Reasoning. PhD
thesis, Carnegie Mellon, 1993.

[19] R.E. Harr, and A.G. Stanculescu. Applications of VHDL to circuit design.
Kluwer Academic Publishers, 1991.

[20] K.L. McMillan. Symbolic model checking. Kluwer Academic Publishers, Boston,
1993.

[21] H. Saidi and N. Shankar. Abstract and model check while you prove. In
Halbwaks and Peled [HP99], pages 443-454, 1999.

18

Gallardo, Mart́inez, Merino, Pimentel

A Tool for Abstraction in Model Checking

Maŕıa del Mar Gallardo, Jesús Mart́ınez
Pedro Merino, Ernesto Pimentel

Dpto. de Lenguajes y Ciencias de la Computación
University of Málaga, 29071 Málaga, Spain

Abstract

Abstraction methods have become one of the most interesting topics in the auto-
matic verification of software systems because they can reduce the state space to be
explored and allow model checking of more complex systems. Nevertheless, there
is a lack of tools actually supporting this technique. One direction for abstracting
a system is to transform its formal description (its model) into a simpler version
specified in the same language, thus skipping the construction of a specific (model
checking) tool for the abstract model. The abstraction of the model should be
followed by the abstraction of the temporal formulas to be checked. This paper
presents αSpin, a tool for the integration of several abstraction approaches (for
models and formulas) into the well known model checker Spin. In particular, αSpin
integrates two dual approaches, the classic abstraction method, based on under-
approximating properties, and an alternative approach, proposed by the authors,
where abstraction provides an over-approximation of the formulas. 2

Key words: Model Checking, Abstraction, Tools, Spin

1 Introduction

Computer based verification methods, such as model checking [1], have become
realistic techniques to be used in the development of critical systems. However,
model checking is only fruitful when a useful model of a system is available. By
useful we mean an abstract representation of the system, containing only the
details which ensure that satisfaction (non-satisfaction) of certain properties
provides us with information about the actual behavior of the system. Models
describing an excess of details may produce the state explosion problem, which
could prevent the use of current tools to fully analyze them. This problem
affects both the symbolic method, and explicit model checking; both of them
employ ideas of abstract interpretation [5] to construct abstract state spaces
or models [2,6,4,13]. Whereas most proposals to implement abstraction focus

2 Work supported by projects TIC99-1083-C02-01 and TIC2001-2705-C03-02
1 Email: gallardo,jmcruz,pedro,ernesto@lcc.uma.es

c©2002 Published by Elsevier Science B. V.

Gallardo, Mart́inez, Merino, Pimentel

on the symbolic approach, there is a great demand for tools for the second
approach. This paper presents a method to extend explicit model checkers
with abstraction. Although our technique can be applied to different tools,
we describe αSpin, an implementation on top of Spin [16,17].

Extending a model checker with automatic abstraction should improve
some of the classical steps enumerated by Clarke et al. in [2]: a) defining
one abstraction function suitable for the temporal property to be verified, b)
constructing the abstract model, and c) relating the verification results to the
behavior of the original (concrete) model.

As regards step (a), we propose the use of an abstraction library with
previously defined abstraction functions that can be used depending on the
properties to be analyzed [10]. This idea is also employed in [9] and [13].

Our method to construct the abstract model (b) is based on syntactic
transformation of the model and the formulas. This allows us to reuse the
same tool (Spin) to verify the abstract model. The approach also gives us a
framework to reason about correctness of the transformation, as discussed in
[10]. Finally, we based the transformation on the use of xml [19] in order to
be as independent as possible of the actual modelling language [12].

Regarding the relation of results (step c), the classic method to abstract
temporal logic is based on defining an abstract satisfability relation which
under-approximates the standard one [2,6]. As a consequence, it is suitable
to check whether a temporal formula is true for all execution paths (sat-
isfaction of universal properties). We introduce a new approach based on
over-approximation of temporal formulas [11], which can be employed to en-
sure that it is impossible for any path in the abstract model to satisfy a for-
mula (refutation of existential formulas). Our experience suggests that, given
a model, both dual methods can be efficiently employed in the verification
work. We have thus integrated both techniques in our current implementa-
tion, αSpin. Furthermore, the implementation also allows us to explore how
to obtain more benefits from the combination of both approaches in the same
formula.

Abstraction by syntactic transformation is also supported by other tools,
but they are mainly oriented to programming languages, and not to formal de-
scription techniques. Furthermore, these tools produce the abstract model in
a different language, thus lacking the advantage of reusing the model checker.
Tools like FeaVer [18], Bandera [9] or the first version of JPF [15] are consid-
ered abstraction tools for Spin because they produce (extract) promela code
from the source code (C, Java). We believe that αSpin is complementary to
these tools because they deal with different problems. In model extraction,
the major aim seems to be how to “remove” great amounts of code to obtain
the promela model. In our case, we start with a relatively simple model,
and our work focuses on incrementally applying abstraction to the initial and
the new promela models. See [7] for an overview of abstraction techniques
and associated tools.

20

Gallardo, Mart́inez, Merino, Pimentel

Process ::= [active[“[”NumberOfInstances“]”]] proctype ProcessTypeID {Decl; InstSeq}
InstSeq ::= [l :] Inst{; [l :] Inst}∗ Inst ::= Basic|Jump|If |Do|Atomic|D Step

Basic ::= BExp | Assign | Input | Output | Rendez Jump ::= goto l | break
If ::= if BranchSeq fi Do ::= do BranchSeq od

Atomic ::= atomic “{” InstSeq “}” D Step ::= d step “{” InstSeq “}”
Input ::= ChannelId ? ExpSeq Output ::= ChannelId ! ExpSeq

Rendez ::= Input | Output Branch ::= :: Inst

BranchSeq ::= Branch{Branch}∗

Fig. 1. Part of Promela Syntax

The paper is organized as follows. Section 2 contains some preliminary
background on Spin and its input languages. Sections 3 and 4 present the the-
oretical basis to support correct abstraction by transformation of promela
and temporal logic, respectively. In Section 5, we explain how to use αSpin
with a previously published lift controller system as the case study [8]. Sec-
tion 6 is devoted to the implementation details of αSpin. In the last section
we discuss the main contributions of the work, and outline some future works.

2 PROMELA, LTL and SPIN

In the last few years, Spin has become one of the most employed model check-
ers in both academic and industrial areas [16,17]. It supports the verification
of usual safety properties (like deadlock absence) in systems written in the
modelling language promela, as well as the analysis of complex requirements
expressed with Linear Temporal Logic (ltl). It is also used as the platform
to try new powerful algorithms to attack the state explosion problem.

2.1 Modelling with promela

promela is a language designed for describing systems composed of con-
current asynchronous communicating processes. A promela model P =
Proc1|| . . . ||Procn consists of a finite set of processes, global and local chan-
nels, and global and local variables. Processes communicate via message pass-
ing through channels. Communication may be asynchronous using channels as
bounded buffers, and synchronous using channels with size zero. Global chan-
nels and variables determine the environment in which processes run, while
local channels and variables establish the internal local state of processes.

promela is a non-deterministic language that borrows some concepts and
syntax elements from Dijkstra’s guarded command language, Hoare’s CSP
language and C programming language (see Fig. 1). A promela process is
defined as a sequence of possibly labelled sentences preceded by the declarative
part (see example in Fig. 2). Basic sentences in promela are those that
produce a definite effect over the model state; in other words, the assignments,
the instructions for sending (receiving) messages to (from) channels and the
Boolean expressions, BExp, that include tests over variables and contents

21

Gallardo, Mart́inez, Merino, Pimentel

Fig. 2. Lift system model and LTL formula in XSpin

of channels. In addition, promela has other non-basic sentences like the
non-deterministic If and Do sentences.

2.2 Temporal logic

Spin verifies ltl formulas against promela models. Well-formed formulas of
linear temporal logic (ltl) are inductively constructed from a set of atomic
propositions (in promela, propositions are tests over data, channels or la-
bels), the standard Boolean operators, and the temporal operators: always
“�”, eventually “�” , next “O”, and until “U”. Formulas are interpreted
with respect to model state sequences ti = si → si+1 → Each sequence
expresses a possible model execution from state si. The use of temporal oper-
ators permits construction of formulas that depend on the current and future
states of a configuration sequence. The semantics of ltl is shown in Fig. 3
where p is a proposition, and f and g are temporal formulas. For the sake of
convenience, we assume that all formulas are in negation normal form, that is,
negations only appear in propositions. Note that we have not included a rule
defining the satisfaction of a negated formula. Instead, we treat the evalua-
tion of negated propositions independently of their corresponding non-negated
ones. The reason for this will be explained in Section 4. The two last rules in
Fig. 3 define the semantics of the universal and existential temporal formulas.
There, M represents the set of execution traces produced by the model.

2.3 Spin

By default, given a ltl formula, Spin translates it into an automata that
represents an undesirable behavior (which is claimed to be impossible). Then,
verification consists of an exhaustive exploration of the state space searching

22

Gallardo, Mart́inez, Merino, Pimentel

ti |= p iff si |= p

ti |= �f iff ∀j ≥ i.tj |= f

ti |= �f iff ∃j ≥ i.tj |= f

ti |= Of iff ti+1 |= f

ti |= fUg iff ∃k ≥ i.∀j.i ≤ j < k.tj |= f, tk |= g

M |= ∀f iff ∀t.t |= f

M |= ∃f iff ∃t.t |= f

Fig. 3. LTL Semantics

for executions that satisfy the automata. If such an execution exists, then the
tool reports it as a counterexample for the property. If the model is explored
and a counterexample is not found, then the model satisfies the ltl property as
a universal property. The same verification scheme can be employed to check
whether a formula cannot be satisfied by any path (refutation of existential
properties). These two ways of using ltl are presented in a user friendly
interface called XSpin, as shown in Fig. 2. The first case corresponds to
marking ”All Executions” and the second one to ”No Executions”.

Although there are many real examples where the verification can be done
with standard exhaustive verification, Spin also implements optimization tech-
niques to deal with complex systems. Partial order reduction replaces several
interleaved sequences of events (sentences) by only one that represents the
whole set. State compression reduces the use of memory by compressing the
representation of the states without losing information. Bit-state hashing rep-
resents states as bits in a hash table, so in many cases the analysis is only
partial. Our new tool preserves these optimization techniques.

3 Abstracting PROMELA

The first step for realizing abstract model checking is to reduce the model to
be analyzed. In [10], we described a method based on the source-to-source
transformation to abstract promela models. The main idea in this work is
that for abstracting models it suffices to replace the original type definitions
(data and basic operations) by simpler ones, in such a way that the control
part of the program (high level operations like non-determinism selection and
loops, co-routines and so on) remain unchanged. From a practical point of
view, this observation is very important, because it allows us to isolate the
program points that must be changed when abstracting a model independently
of the complexity of the language constructions. In addition, this modular
vision facilitates the definition of abstractions, the analysis of the correctness
of the abstraction and even the implementation.

In the rest of the section we summarize the theoretical background sup-
porting the source-to-source transformation method. Let State denote the set
of system states. We define functions effect : Basic × State → State and
test : BExp × State → {false, true} which describe the effect of executing a

23

Gallardo, Mart́inez, Merino, Pimentel

basic sentence and a test in a given state, respectively. The semantic function
G(−, effect , test) : promela → ℘(Stateω) associates each model M with the
set of traces G(M, effect , test) representing all possible executions of M , in
which functions effect and test are used when executing a basic sentence or a
Boolean expression. Note that functions test and effect represent the standard
implementation of the model data types.

In order to simplify the analysis of properties over G(M, effect , test), we
must choose an adequate set of reduced states (Stateα,≤α) and an abstrac-
tion function α : State → Stateα which transforms concrete states into
their abstractions. Each abstract data is intended to represent a set of con-
crete states sharing some characteristic which is abstracted. (Stateα ,≤α)
is usually a complete lattice, and the partial order ≤α represents the de-
gree of precision of each abstract state. Finally, to obtain the abstract be-
haviour of the model we must also define abstract versions of effect and test ,
that is, functions effectα : Basic × Stateα → Stateα and testα : BExp ×
Stateα → {false, true}, giving the proper meaning to the basic promela
sentences when executed over abstract states. Given the previous discussion,
G(M, effectα, testα) ∈ ℘((Stateα)ω) defines an abstract behavior, easier to be
analyzed, for the same model M .

For instance, Fig. 2 shows an excerpt of a promela model that repre-
sents the behavior of a lift (extracted from [8]). In order to simplify the ex-
position, we assume that system states are given by the value of the variable
Position[pid] that is an integer number between the values 0..nb floor − 1.
Variable Position[pid] always stores the current floor for the lift identified
by pid. To reduce the model size, consider the poset (FLOORS,≤α) illustrated
in Fig. 4 and the abstraction function α : [0..nb floor − 1] → FLOORS defined
as α(0) = Lower , α(nb floor − 1) = Upper and ∀0 < j < nb floor − 1, α(j) =
Middle. The use of the partial order ≤α allows us to include the notion of
approximation in the abstract domain FLOORS: the abstract value noUpper
approximates any floor different from the Upper one, thus noUpper is an ab-
stract value less precise than both Lower and Middle. Value Unknown is the
least precise abstract data since it represents any floor. Finally, value ⊥ is
used to represent illegal values.

The redefinition of states involves the redefinition of the effect of basic
sentences. The table in Fig. 4 shows a definition of the abstract effect.

3.1 Correctness

Given an abstraction function α, it is clear that functions effectα and testα may
be arbitrarily defined. However the interest of the approach is in preserving
some correction properties between G(M, effect , test) and G(M, effectα, testα).
In [10] there is an exhaustive study of the correctness conditions that testα and
effectα must verify for G(M, effectα, testα) to be a correct over-approximation
of G(M, effect , test).

24

Gallardo, Mart́inez, Merino, Pimentel

sα effectα(i=i+1, sα) effectα(i=i-1, sα)

Lower Middle ⊥
Middle noLower noUpper

Upper ⊥ Middle

noLower noLower noUpper

noUpper noLower noUpper

Unknown noLower noUpper

Fig. 4. Part of the abstract effect and the lattice for FLOORS

Correctness conditions guarantee that the reduced/abstract model simu-
lates the original one in the sense that for each non-deadlocked trace t = s0 →
s1 → . . . ∈ G(M, effect , test) there exists a non-deadlocked abstract trace
tα = sα

0 → sα
1 → . . . ∈ G(M, effectα, testα) that over-approximates it, which

is denoted by α(t) ≤α tα, where α(t) represents the abstract trace α(s0) →
α(s1) → . . . and we define α(t) ≤α tα as the relation ∀i ≥ 0.α(si) ≤α sα

i . Note
that we explicitly exclude deadlocked traces because the abstraction process
may modify this safety property of the system. For instance, the concrete
trace

t = 0
i=i+1→ 1

i=i+1→ 2
i=i−1→ 1

i=i−1→ 0
skip→ . . .

could be approximated by the abstract trace

tα = Lower
i=i+1→ Middle

i=i+1→ noLower
i=i−1→ noUpper

i=i−1→ noUpper
skip→ . . .

We have labelled each transition with the basic instruction executed. Note
that we have used the table in Fig. 4 to realize each abstract transition.

We implement the loss of information when executing abstract operations
using specific abstract constants instead of sets of constants as employed in
[9]: for example, when the value Middle is incremented, we use the value
noUpper instead of the set {Lower,Middle}. When applied to abstract tests,
this means that function testα always produces a safe result, that is, it returns
true iff in some concrete execution the value true may be returned. Thus,
given p ∈ BExp, and sα ∈ Stateα, function testα is defined as

testα(p, sα) =
∨

{s∈State.α(s)≤αsα}
test(p, s) (Over)

In addition, in the following section, we will make use of the abstracted
constants to implement the over-approximation method for evaluating tem-
poral formulas.

3.2 Syntactic transformation of Promela

The syntactic transformation of a promela model M to obtain a new model
Mα is based on replacing each basic instruction in M by a standard promela
code that implements testα and effectα. Then the verification is carried out by
only executing standard promela instructions. This approach corresponds
to implementing a verifier for G(Mα, test , effect).

25

Gallardo, Mart́inez, Merino, Pimentel

For instance, the next code shows FLR INC, a possible implementation of
abstract increment i = i + 1 defined in Fig. 4.

#define FLR_INCR(v) (((x==Lower))->Middle:

(((x==Middle))->noLower:

(((x==noUpper))->noLower:

(((x==noLower))->noLower:

(((x==Unknown))->noLower: (ILLEGAL))))))

In this code, the constant ILLEGAL is employed to represent ⊥. The code in
Fig. 2 is now replaced by the following one, that illustrates the use of the
abstract instruction (effectα) to increase the variable Position[].

proctype Lift(int pid){

int Order=null;

do

...

:: SysLift_Lift[pid]?Order;

if

:: (Order==Up) -> FLR_INCR(Position[pid]);

...

}

The same method is employed to implement testα. For example, the next
definition contains the implementation of FLR EQ (abstract test for (i==j))

#define FLR_EQs(x,y) ((x==Lower && y==Lower) || (x==Upper && y==Upper))

#define FLR_EQw(x,y) (((x==Upper)&&(y==noLower)) || ((x==noLower)&&(y==Upper)) ||

((x==Lower)&&(y==noUpper)) || ((x==noUpper)&&(y==Lower)) ||

((x==Middle)&&(y==noUpper)) || ((x==noUpper)&&(y==Middle)) ||

((x==Middle)&&(y==noLower)) || ((x==noLower)&&(y==Middle)) ||

((x==Unknown)) || ((y==Unknown)))

#define FLR_EQ(x,y) (FLR_EQw(x,y) || FLR_EQs(x,y))

Function FLR EQ verifies the correctness conditions (studied in [10]) neces-
sary for the abstract model to correctly simulate the original one. Informally,
FLR EQ(x,y) is true when a == b holds for some concrete data a and b ab-
stracted by x and y, respectively, as defined in (Over) equation. This explains
why FLR EQ(Upper,noLower) returns true. The reason for defining FLR EQ us-
ing two macros (FLR EQs and FLR EQw) will be explained below.

The user has to select the variables to be abstracted and the abstraction
to be applied (α), and then the transformation is automatically performed.

4 Abstracting Temporal Logic

Once the model has been reduced using the method described in the previous
section, the following step is to define the satisfaction of a temporal formula
over the abstract model (which is called the abstract satisfaction) and to relate
it with the satisfaction the formula over the original one.

Atomic propositions in ltl formulas regarding promela models are Boolean
expressions. Thus, considering the standard notion of satisfiability given in
Fig. 3, and following the same idea used for abstracting the model, we may
assert that in order to define the abstract satisfaction of a temporal formula

26

Gallardo, Mart́inez, Merino, Pimentel

it suffices to define the abstract satisfaction of the atomic propositions. One
clear possibility is to use the function testα, as defined in the previous section
(Over), to evaluate the atomic propositions. Using testα leads us to construct
the so-called over-approximation method for abstracting temporal formulas,
which has been studied at length in [11]. An alternative possibility is to use the
following function testα

c to evaluate the atomic propositions. Given p ∈ BExp
and sα ∈ Stateα, testα

c is defined as

testα
c (p, sα) =

∧

{s∈State.α(s)≤αsα}
test(p, s) (Under)

Classic papers integrating model checking and abstraction [2,6] use func-
tion testα

c to evaluate temporal formulas. Function testα incorporates the dual
method that may be of interest in some occasions, as discussed in the next
section. Now, we summarize the main theoretical results concerning the rela-
tion between the abstract satisfaction of temporal formulas over the abstract
model (using both the classic and the over-approximated method) and the
satisfaction over the concrete model.

In the rest of the section, we write:

(i) s |= p when test(p, s) holds,

(ii) sα |=α p when testα(p, sα) holds, and

(iii) sα |=α
c p when testα

c (p, sα) holds.

We also extend |=, |=α and |=α
c to abstract traces defining the meaning of

temporal operators as in Fig. 3. Note that, for instance, when we write
Mα |=α

c ∀f , we mean that ∀tα ∈ G(M, effectα, testα).tα |=α
c f , and so on.

The following theorem presents two direct results of the previous defini-
tions. In the theorem, we assume that G(M, effectα, testα) is a correct over-
approximation of model G(M, effect , test) in the sense described in the previ-
ous section, and that the original model is deadlock-free.

Theorem 4.1 Given a temporal formula f

Mα |=α
c ∀f ⇒ M |= ∀f

Mα 	|=α ∃f ⇒ M 	|= ∃f

The first result corresponds to the classic weak preservation of univer-
sal properties studied in [6]. Using the classic methodology, the satisfaction
of universal properties is directly preserved from the abstract to the con-
crete model. The second result is the dual preservation result. Using the
over-approximation method, the refutation of existential properties is directly
preserved from the abstract to the concrete model. Note that these results
are not equivalent because they deal with negation using non-standard and
dual approaches. Given a proposition p and an abstract state sα, using def-
inition (Under), it is possible that for the classic method neither testα

c (p, sα)
nor testα

c (¬p, sα) hold. In contrast, due to definition (Over) for the over-

27

Gallardo, Mart́inez, Merino, Pimentel

approximation method, it is possible that both testα(p, sα) and testα(¬p, sα)
hold. This is why we skipped the negation rule from Fig. 3. Thus, consider-
ing that formula ¬f is in negation normal form, we have that Mα 	|=α

c ∀f 	⇒
Mα |=α

c ∃¬f , and, in addition, Mα |=α ∀f 	⇒ Mα 	|=α ∃¬f .

4.1 Syntactic transformation of LTL

The syntactic transformation of temporal formulas is straightforward on the
basis of the previous discussion. The first step consists of writing the formula
in negative normal form (if necessary). Then the propositions are automati-
cally replaced by the abstract implementation of the test, depending on the
method to be employed. For the implementation of the over-approximation
method, propositions are defined using the same definition of testα employed
to transform the model. But the implementation of testα

c must be more re-
strictive than testα in order to ensure the criterium defined above (Under). A
definition like

#define FLR_EQs(x,y) ((x==Lower&&y==Lower)||(x==Upper&&y==Upper))

implements the (classic) abstract test for (i==j). Informally, FLR EQs(x,y)

is true when a == b holds for every concrete data a and b abstracted by x
and y, respectively, as defined in (Under). Note that FLR EQ uses the two
macros FLR EQs and FLR EQw in order to consider the cases where only some
concrete states satisfy (i==j).

5 Using αSpin: A case study

In this section, we describe the main functionality that αSpin adds to Spin/XSpin
Our case study is a variant of the promela code for an elevator controller
presented in [8]. In this section, we show how to employ the dual approaches
for the refutation and verification of temporal properties.

The first experiment is to discard errors by refutation (with the over ap-
proximation method). The second one consists of checking a desired universal
property with the classic method.

5.1 The model

The original specification considers a controller system to manage n lifts, and
our aim is to verify that the same control structure also works for only one lift.
Following the rules about how to construct suitable models for verification,
we have made a set of changes to work with one lift (see Fig. 5). The input to
the system is modelled by a process that produces user requests from inside
the lift (internal requests). The lift is represented with the Lift() process
that receives orders to move up, down and stop, thus updating the Position

of each one. The control part receives the inputs and sends the orders to
the Lift() process. This part is divided into several processes (SysLift(),

28

Gallardo, Mart́inez, Merino, Pimentel

nb_floor -1

.

.

3

2

0

Lift ()

SysLift ()

SysStop ()

Sampler ()

...............

Position[]

Internal_request[]

...............

Global variables

Fig. 5. a) Scheme of the lift system b) One view in αSpin

SysStop(), and Sampler()) that communicate via rendezvous channels and
global variables. The main variable to control the flow in every process is
the global variable Position, that always stores the current floor for the lift.
The global array internal request[nb floor] stores the pending requests
to move to specific floors, nb floor being the actual number of floors in the
system. The code in Fig. 2 shows the updating of this variable in the Lift()

process depending on the order from the control part (Up, Down, Stop).

5.2 Discarding errors

One critical property to check whether the control system works properly is
the absence of movement in the absence of requests. The property NoMove

says that “the lift never starts the movement without any request”. If we want
to check the property when the lift is on the lower floor, we can encode it as
the temporal formula

NoMove: <> (posL && no_request && <> posAboveL)

and then we can use Spin to verify that there are no executions satisfying the
formula (done in Fig. 2), where the propositions posL and posAboveL represent
whether the lift is currently on or above the lower floor, and no request

represents that there are no users for the lift. These propositions are defined
according to their interpretation standard or abstract as defined in Section 4.

The main problem in verifying the concrete model (with standard mean-
ing for propositions) is that the verification time is highly dependent on the
number of floors, and it is not scalable when this parameter is increased
to high values. Fortunately, propositions in the formula NoMove give us a
guide on how to abstract. As the evaluation of these propositions mainly

29

Gallardo, Mart́inez, Merino, Pimentel

relies on the value of the variable Position[], and this variable is used
as a counter, we could employ the FLOORS abstraction to reduce the state
space to be visited. However, the use of FLOORS implies that the global ar-
ray internal request[nb floor] has to be abstracted by an array with only
three components. This information is suggested by the abstraction tool by
analyzing the structure of the model, and it can also be guessed by the user
from the output like the one in Fig. 5. The GUI gives information about the
variables contained within the model (name, type and context: global or lo-
cal), the available templates in the abstraction library suitable for the variables
in the temporal formula and the current binding of variables to abstraction
functions (Position[1] will be abstracted using FLR). When the abstraction
functions have been selected, αSpin performs the syntactic transformation
of the model depending on the user’s choice. When the choice is Property

holds for No Executions (error behaviour), as shown in Fig. 6, the code
is produced to employ the over-approximation of the formula. The macros
FLR EQ, FLR GT, FLR NE, .. implement this over-approximation, testα, as
described before. As shown in Fig. 6 the error is not present either in the
abstract model or, using Theorem 4.1, in the concrete model.

The benefits of using the abstract formula to discard this error are summa-
rized in Fig. 8. The formula employed to check movement is the previous one
extended to also consider departure for upper and middle floors. The expected
number of visited states is greatly reduced compared to the concrete model
(see Fig. 8). Furthermore, the variation of the number of states is linear with
respect to the number of floors.

5.3 Verification of a desired behaviour

After discarding the key critical error behaviors, we proceed by verifying that
the lift system works to provide the intended service. The property Move says
that “the lift always starts the movement to the requested floor”

The version of the property as a desirable behaviour could be as follows:

Move: [] ((reqL && posU) -> <> posBelowU) && ((reqU && posL) ->

<>posAboveL) && ((reqM && noPosM)-> <> posM))

where the propositions reqL,reqU and reqM represent requests from Lower,
Upper and Middle floors, respectively. Propositions posU, posBelowU, posL,
posAboveL, and noPosM represent whether the lift is currently at, above or
below, a specific floor. Again, these propositions are defined according to the
interpretation standard or non-standard, depending on how the verification is
to be performed (with concrete or abstract model).

The model is transformed (automatically) in the same way that the refuta-
tion case, but when selecting Property holds for All Executions (desired

behaviour), the formula is transformed (automatically) to employ the classic
method. Note that in Fig. 7 the propositions in the formula are defined us-
ing the macros FLR EQs, FLR GTs, FLR NEs, ... that implement the classic

30

Gallardo, Mart́inez, Merino, Pimentel

Fig. 6. Refutation of erroneous behaviours

Fig. 7. Verification of desired behaviours

under-approximation testαc . Now the verification result “valid” in the abstract
formula ensures that the concrete model satisfies the property. The benefits
of verifying with this method are shown in Fig. 8.

6 Implementation

The main design criteria in our abstraction tool is to obtain as much indepen-
dence with respect to particular modelling languages and model checkers as
possible. So we consider xml as the unique internal representation to perform
the abstraction by transformation as shown in Fig. 9. The actual modelling
language can be translated into this representation by a front-end module
(steps 1 and 2 in Fig. 9) and the final abstracted model for the model checker
can be produced by a specific back-end module (steps 6 and 7). Furthermore,
if we use the same internal notation for both models and abstraction functions,
we can concentrate efforts in developing reusable techniques and uniform tools
for transformation based abstraction.

In addition to practical reasons like the use of browsers and other user-
friendly presentation tools, the development of xml oriented tools is supported
by a number of more technical reasons (see [12]). As every model checker
uses a particular input, from the point of view of the modelling language,
each one has a specific parser and additional support to convert the model

31

Gallardo, Mart́inez, Merino, Pimentel

Fig. 8. Verification results

specification into a suitable internal data structure for the model checking
phase. Unfortunately, it is not a common practice to have access to this
internal representation, because model checking tools are source-closed or not
flexible enough for implementing data transformation or manipulation via a
set of APIs, as required in abstraction. Even in cases of open-source projects
like Spin, most of the work to perform abstraction cannot be directly reused
for other model checkers. In addition, the xml representation of the model
facilitates traditional tasks in abstraction tools, such as finding relationships
among variables or locating the points where a particular variable is employed.

As regards abstraction functions, xml is a powerful means to represent
the mapping between concrete and abstract data and abstract operations,
including details such as the type of the operands, associativity rules, etc (see
Fig. 10). Furthermore, the whole abstraction library can be defined as an xml
repository.

The current implementation is composed of the modules shown in Fig. 9.
Most of them have been completed, and we are now working on the abstraction
prover, that will assist in generating new correct abstraction functions to be
included in the library.

7 Concluding Remarks

The main contribution of this paper is the presentation of a tool to perform ab-
straction by syntactic transformation in the context of explicit model checking.
We have presented the actual state of αSpin, a tool that integrates the classic
method for abstraction and our over-approximation method. Documentation
and current and future versions of αSpin can be found at [20].

The theoretical approach that support the transformation gives us a safe
framework to extend implementation preserving the relation between the re-
sults in the abstract and the concrete models (and formulas). For example,
we have implemented a method to check existential properties (those that are
true for at least one path) [6]. To do that, the model has to be transformed

32

Gallardo, Mart́inez, Merino, Pimentel

Fig. 9. Architecture of xml based abstraction and modules of αSpin

Fig. 10. Part of the XML based abstraction library

using the most constrained versions of abstract effect and test (effectα
c and

testα
c), and the formula is transformed using testα

c . We are now extending the
theoretical framework to give support to new transformations (a related work
can be found in [4]).

Other interesting contributions are the use of abstraction libraries and
the use of xml to support the abstraction process. The library should be
employed to store new functions that are revealed as useful in the verification
experiences. It is even possible to give a taxonomy to these functions to make
their use easier [14]. Again, xml is a good candidate to store this information.

Our future work is to add strategies to automatically analyze the correct-
ness of abstraction functions using PVS. Another line of work is to improve
counterexample analysis [3].

Acknowledgements We would like to thank the referees for their helpful
and constructive comments.

References

[1] E.M. Clarke, E. A. Emerson and A.P. Sistla. Automatic Verification of Finite-State
Concurrent Systems using Temporal Logic Specifications, ACM TOPLAS, 8(2),(1986).

33

Gallardo, Mart́inez, Merino, Pimentel

[2] E.M. Clarke, O. Grumberg and D.E. Long. Model Checking and Abstraction, ACM
TOPLAS , 16(5), (1994), 1512–1245.

[3] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith. Counterexample-guided
Abstraction Refinement, Proc. of the 12th CAV, LNCS-1855, pp. 154-169, (2000).

[4] R. Cleaveland, S.P. Iyer and D. Yankelevich. Optimality and abstraction in model
checking. In A. Mycroft, editor, Static Analysis Symposium, LNCS-983, pp. 51-63,
(1995)

[5] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints, in Conf. Record
of the 4th ACM Symp. on POPL, pp. 238-252, (1977).

[6] D. Dams, R. Gerth and O. Grumberg. Abstract Interpretation of Reactive Systems,
ACM TOPLAS , 19(2), (1997), 253–291.

[7] D. Dams. Abstraction in Software Model Checking: Principles and Practice, in 9th Int.
SPIN Workshop. Model Checking Software, LNCS-2318, pp. 14-21, 2002.

[8] G. Duval and T. Cattel. From Architecture down to Implementation of Safe Process
Control Applications. Design, Verification and Simulation. In Proc. of the 13th Annual
Hawaii Int. Conf. on System Sciences (HICSS 30) (1997).

[9] M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. Pasareau, W. Visser, H. Zheng.
Tool-supported Program Abstraction for Finite-state Verification. Proc. of ICSE 2001,
2001.

[10] M.M. Gallardo and P. Merino. A Framework for Automatic Construction of Abstract
promela Models. In Theoretical and Practical Aspects of Spin Model Checking, LNCS-
1680, pp. 184-199, (1999).

[11] M.M. Gallardo, P. Merino and E. Pimentel. Verifying Abstract LTL Properties on
Concurrent Systems Proc. of the 6th World Conference on Integrated Design & Process
Technology. (2002). To appear.

[12] M.M. Gallardo, J. Martinez, P. Merino and E. Rosales, Using XML to implement
Abstraction for Model Checking. In Proc. of ACM Symposium on Applied Computing,
pp. 1021-1025 (2002).

[13] S. Graf. Verification of a distributed Cache Memory by using abstractions. In Dill, D.,
(Ed.) Computer Aided Verification , LNCS-818, pp. 207-219, (1994).

[14] S. Graf. Personal Communication. 2002.

[15] Havelund K., Pressburger T., Model Checking Java Programs using Java Path Finder.
Software Tools for Technology Transfer (STTT) 2(4):366-381, (2000).

[16] G.J. Holzmann. Design and Validation of Comp. Protocolos. Prent-Hall, (1991).

[17] G.J. Holzmann. The Model Checker SPIN. IEEE Trans. on SE, 23(5), (1997).

[18] G. J. Holzmann and M. H. Smith. A Practical Method for the Verification of Event
Driven Systems. In Proc. of ICSE99, pp. 597-608, (1999).

[19] W3Consortium. Extensible Markup Language (XML) 1.0 (Second Edition), available
in: http://www.w3.org/XML/, (2000).

[20] αSpin project. University of Málaga. http://www.lcc.uma.es/˜ gisum/fmse/tools

34

© 2002 Published by Elsevier Science B.V.

Validation and automatic test generation on UML
models: the AGATHA approach

David Lugato - Céline Bigot - Yannick Valot

CEA/LIST/DTSI/SLA

CEA Saclay – Bat. 451
91191 Gif sur Yvette Cedex

{david.lugato, celine.bigot, yannick.valot}@cea.fr

Abstract
The related economic goals of test generation are quite important for software industry. Manufacturers
ever seeking to increase their productivity need to avoid malfunctions at the time of system
specification: the later the defaults are detected, the greater the cost is. Consequently, the development
of techniques and tools able to efficiently support engineers who are in charge of elaborating the
specification constitutes a major challenge whose fallout concerns not only sectors of critical
applications but also all those where poor conception could be extremely harmful to the brand image of
a product.

This article describes the design and implementation of a set of tools allowing software developers to
validate UML (the Unified Modeling Language) specifications. This toolset belongs to the AGATHA
environment, which is an automated test generator, developed at CEA/LIST.

The AGATHA toolset is designed to validate specifications of communicating concurrent units
described using an EIOLTS formalism (Extended Input Output Labeled Transition System). The goal of
the work described in this paper is to provide an interface between UML and an EIOLTS formalism
giving the possibility to use AGATHA on UML specifications.

In this paper we describe first the translation of UML models into the EIOLTS formalism, and the
translation of the results of the behavior analysis, provided by AGATHA, back into UML. Then we
present the AGATHA toolset; we particularly focus on how AGATHA overcomes several problems of
combinatorial explosion. We expose the concept of symbolic calculus and detection of redundant
paths, which are the main principles of AGATHA’s kernel. This kernel properly computes all the
symbolic behaviors of a system specified in EIOLTS and automatically generates tests by way of
constraint solving. Eventually we apply our method to an example and explain the different results that
are computed.

Keywords : UML specification, automated test generation, symbolic calculus.

1. Introduction
Formal methods allow system analysis and test generation from specifications. This provides an early
feedback on a system's behavior. The economic goal of this specification analysis step is considerable,
as it simultaneously reduces cost and time of validation, while increasing system reliability. But these
formal techniques are generally quite complex: this is why such techniques have not, at this time,
penetrated the industrial domain. Therefore, it is crucial to provide tools in which these techniques are
automated.

36

It is also well known that the difficulty of analyzing a system depends on the “quality” of the
specification. That’s why it’s crucial to observe a few rules while specifying a system. Because general
UML models still have a lot of points with variable, open or undefined semantics [1], formal analysis
requires respecting modeling rules and some UML specialization. These specializations are attached or
dedicated to the European project AIT-WOODDES [2].

Methods and tools have been developed to analyze systems using their specification (in order to
prevent unexpected behaviors) and to generate tests (to guarantee the fitness of the implementation to
the model). Tools such as AGATHA generate test sets allowing to validate that the software
implementation is conformant to its specification (black box testing). As it also generates a symbolic
execution tree, AGATHA allows deep investigation into the system’s behaviors. To produce these
results AGATHA has to deal with combinatorial explosion. We will see in the second part of this paper
how AGATHA overcomes this problem. The AGATHA toolset is a melting-pot of different techniques,
as in [3]. The kernel is based on symbolic calculus, detection of interleaving, constraint solving,
rewriting procedures, polyhedral calculus... Like [4], the AGATHA toolset generates a set of tests for
UML statecharts, but it does not need test requirements to compute an exhaustive symbolic path
coverage. Note there are also several differences on the UML semantics used in the Hartmann’s tool
and in the tool presented here.

The first step of our work is to develop an interface between UML and the A-EIOLTS (AGATHA
Extended Input Output Labeled Transition System) language used by AGATHA, being especially
careful to respect the peculiarities of the semantics of each language. We implemented the resulting
translation algorithms in the Objecteering 5 UML modeling tool [5].

Formal validation of specification as well as software testing usually require high skills, time and staff.
In this paper, we discuss the new features added to AGATHA in order to use it in a transparent way
and to exhaustively compute the behaviors of the specification.

We wish to promote an incremental way of elaborating a specification. As will be demonstrated, the
toolset helps engineers in formally validating the developed systems at any step. We would like to
insist on the transparency of using AGATHA to validate a UML specification. Thanks to the complete
automation of AGATHA techniques, developers will be able to validate a specification while staying in
the UML CASE tool used for modeling and then also generate tests for the implementation.

2. Transcription UML models to A-EIOLTS
We connect the AGATHA toolset to the environment of the AIT-WOODDES project that offers a
method for designing UML specification, an automatic code generator and validation tools. In this
context we generate tests for UML models designed with the ACCORD methodology [6]. The accepted
UML models are designed with class diagrams. Each class should have one or more statechart diagram
that represents its dynamic behavior. Collaboration diagrams are used to model interactions between
instances of classes. The results provided by AGATHA will be turned into UML sequence diagrams.

2.1 Two step process transcription
The translation from UML to A-EIOLTS is a two-step process. First, the UML specification is checked
against consistency rules to verify that the translation modules will be able to translate the specification
to A-EIOLTS; this module also transforms the UML model into another UML model, of equivalent
semantics, but using only a restricted set of UML’s elements. A second module then translates this
restricted UML into an A-EIOLTS file. In the following sections we only describe the second-step
translator.

Another module can analyze the resulting file and bring the results back into the Objecteering CASE
tool, for instance animating the statecharts to show the execution of the state machines for the objects
involved in a given test case (see Fig.1).
The subset of UML that is used is designed to achieve the same level of simplicity in the description of
the state machines than the A-EIOLTS input language of AGATHA. The second step converts the
“simplified UML” into the A-EIOLTS file proper.

37

In this project, class diagrams are used to represent the classes involved, a collaboration diagram
shows the messages exchanged by the different instances of these classes, and for each class a state
machine and its state diagrams show the behavior of the objects. Sequence diagrams can be used as a
feedback to represent the different possible tests provided by AGATHA.

 Developed
tools

Developed tools

U M L
Mode l

UML Ed i t o r
(Objecteering)

User

Interacts

T w o-step
specif icat ion

generator
AGATHA

A-EIOLTS
Specif icat ion

Resu l ts
(Exhaustive

Paths)

Resul ts parser
and analyser

UML
feedback

Fig.1 – Interfacing UML modeling and AGATHA

2.2 Active objects
UML defines a category of objects called active objects. Each active object has its own processing
resource (typically, they have their own task, process or thread). As a result, active objects can run
concurrently with others. They are opposed to passive objects, which have their own data but are
carried out only when there are called by an active object that lends its thread to the passive object in
order to execute the requested action.

Active objects, when associated with a UML state machine, have an event queue that allows them to
store incoming events until the state machine is able to handle them. In this project, the translated
models must contain only active objects.

2.3 AGATHA’s input language
We describe here only the general principles of A-EIOLTS. This formalism is inspired of a simplified
version of the ESTELLE language [7].
The hierarchical module structure is limited to a flat structure with only communicating controllers at the
lowest level. Each module is composed with the declaration of I/O messages and variables, the list of
nodes of the automata and of course the list of transitions between these nodes (see Fig.2 for an
example of an A-EIOLTS transition).

The following restrictions apply as well:
• Communications between modules are limited to synchronous rendezvous,
• Multiple rendezvous are not allowed: a rendezvous must entail only two automata (or modules,

sender and recipient; neither multiple recipients nor broadcasting of messages are supported).
When the recipient for a message is a module, OUTPUT instructions lock their module until a
rendezvous occurs, if any. On the other hand, a message sent to the environment or received from the
environment is considered sent asynchronously and therefore non-blocking. Since rendezvous must
include only two modules, at a given time, a module can send only one message to another module.

TRANS
FROM state1
TO state2
WHEN input(x)
PROVIDED x > 0
OUPTUT ok
BEGIN
a := a + x ;
END;

Fig.2 – Example of an A-EIOLTS transition

State2

State1 ?input(x)
[x > 0]

!ok
a := a + x;

38

Since outputs are locking, it is no longer possible to follow the semantics of extended transition
systems. In extended transition systems, you can send a message within the actions of a transition,
those actions being no longer limited to assignments. To reproduce this semantics, it is necessary to
create intermediary states. Thus, fusion of the controllers becomes statically computable, the
rendezvous no longer depending on the actions.
Variable management is performed in the transition’s body, using level 0 PASCAL instructions. The
actions that can be specified on a transition are restricted to the following set:
• Variables, for instance X, Y, …

• Functions : +|-|OR|AND|… (operators)
 0|1|…|TRUE| (constants)

• Expressions X:=E (assignments)
 C;C’.(sequencing)
 IF E THEN C;ELSE C’(conditional test)

Nevertheless, it is important to note that this subset allows a user to express any complex instruction.
Guards (‘PROVIDED’) are of logic type, but notice that temporal guards have been added in order to
validate SDL specifications [8].
Global variables must be avoided as much as possible, due to a particularly important risk of
combinatorial explosion. Note that the use of global variables is groundless from a behavioral
standpoint.

2.4 Defining a restricted UML state machine
We define a restricted UML state machine (or simplified UML), which is a restriction of the set of UML
concepts related to state machines. Any state machine can be converted into this subset, without
modifying the semantics.
To be easily translatable to A-EIOLTS, the restricted UML must be of similar complexity. Thus only
simple states and simple transitions are supported. The event-handling mechanism for UML state
machines is linked to UML objects, and cannot be changed. Therefore, like simple states and
transitions, the event-handling mechanism is a fundamental element of UML semantics and is kept in
the semantics of restricted UML
In the UML specification, a call event represents the reception of a request to synchronously invoke a
specific operation. A-EIOLTS only supports one call event per transition. Actions to be executed on a
transition can only consist of one action, of type CallEvent. It would have been possible to add
operation calls towards the environment, but we keep things simple by allowing only one operation call
per transition, thus suppressing the need to discriminate between operation call recipients. Note that an
object calling one of its own operations is considered as a CallEvent.
According to the restrictions of A-EIOLTS, it is not possible for an output to be part of the A-EIOLTS
transition’s actions. One direct consequence is that a CallEvent cannot be the result of a conditional
expression inside the actions of the UML transition.
Moreover, AGATHA always sends the OUTPUT message first, and then executes the action. This
prevents a message from being sent after several actions took place (in particular, the parameters of the
message will not depend on the actions in those transitions). In short, restricted UML only allows
either one CallEvent OR (exclusive) a series of assignments (see Fig.3 for an illustration of accepted
transition).

Source state Target state

Event(params) [Guard] / Actions

Fig.3 – A simple transition with its label

Finally, restricted UML is defined by the following rules:
• Only simple states are supported (no composite states),

39

• Only simple transitions are accepted (no pseudo-state except the initial pseudo-state),
• Actions are accepted only on transitions (no activity, no entry and no exit actions on states),
• No Call Action within a conditional test (IF-THEN-ELSE),
• Actions on a transition are either one single CallAction or (exclusively) a series of assignments

and conditional tests separated by semicolons (“;”).
UML active objects or A-EIOLTS modules are executed concurrently in an asynchronous manner. But
for UML active objects communication is asynchronous and for A-EIOLTS sending a message blocks
the source module until the message is received by the target module (synchronous rendezvous).
Therefore, the mechanisms involved in UML event processing are translated precisely into an A-
EIOLTS description, in order to get the same communication semantics. In the next subsection we
introduce the translation of this mechanism and then we introduce the concept of execution models,
which is related to the way translation must be carried out.

2.5 Splitting the objects
According to the UML specification (OMG-UML V1.3, §2.12.4 – Semantics), a state machine (which can
be used to model the behavior of an active object) is composed of three elements: one structural
element and two processing elements.
UML gives this representation as an example only, noting that any other mechanisms achieving the
same semantics would be conformant to the specification. But this example is very close to what A-
EIOLTS enables, and so is our implementation .
The three elements are defined as follows:
• An event queue that holds incoming events instances until they are dispatched;
• An event dispatcher mechanism that selects and de-queues event instances from the event queue

for processing;
• An event processor that processes dispatched event instances according to the general semantics

of UML state machines and the specific form of the state machine in question; because of this, the
UML specification calls it the “state machine”.

Therefore we naturally attach two A-EIOLTS modules for each UML active object:
• The first module is the event processor. Its A-EIOLTS specification is globally similar to the

corresponding state machine, even if a close view will reveal minor changes (transitions split into
several smaller transitions, additional states, added control messages, etc…). The event processor
knows about the behavior of a given active object, its s tates and its transitions.

• The second module is the event dispatcher, which implements asynchronous communications on
top of A-EIOLTS’s synchronous rendezvous model. The event dispatcher must be ready at any
time to receive events from any source, even if the event processor is not ready to handle them
because it is already processing another message. In order to store the events it receives, the
event dispatcher has to implement the event queue inside its module. The event dispatcher does
not know the structure of the state machine; on the other hand it knows which events the event
processor may receive, although it does not know when it may receive them.

The first execution model that has been implemented includes a First-In First-Out queue (see Fig. 4 for
an overview of this decomposition). This decomposition corresponds to the structure proposed by the
UML standard. The event dispatcher receives all the events. If the event processor is busy, the
dispatcher stores the event for later processing; otherwise the event is transferred directly to the
processor.
Therefore, the event dispatcher acts as an input interface for the active objects. Outputs, on the other
hand, are sent directly by the event processor to the other active objects. In the case when the event
processor must send an event to itself, it will in fact send it to its dispatcher, just as if it were another
active object.

40

evt
MyObject

Event for MyObject

Event queue

UML state machine descr ib ing
the act ive ob ject ’s behav ior

Event taken out of the queue
for process ing

Translated to

MyObject

UML Act ive Object “MyObject”

MyObject_FIFO evt

Event fo r MyObjec t

Event taken out o f the
queue for process ing

A-E I O L T S M O D U L E
corresponding to UML’s

event d ispatcher

A-E I O L T S M O D U L E
corresponding to UML’s

event processor

A-EIOLTS statechar t represent ing the
behavior of UML’s act ive object

Fig. 4 – Decomposition of a UML active object into two A-EIOLTS modules

2.6 The Execution Models
UML restrictions impose the sketch lines of event handling, but many of the details are left to the
implementor’s discretion. Since our goal is to analyze the precise behavior of a system, we must impose
the precise details of the execution model.
Details described in such execution models include, but will not be limited to, the handling of events.
The event dispatcher will gain modularity if seen as a black box. We try to stick with this view as much
as possible, although we initially use a FIFO list for our dispatcher.
“The processing of a single event by a state machine is known as a run-to-completion step. Before
commencing on a run-to-completion step, a state machine is in a stable state configuration with all
actions (but not necessarily activities) completed. The same conditions apply after the run-to-
completion step is completed. Thus, an event will never be processed while the state machine is in some
intermediate and inconsistent situation. The run-to-completion set is the passage between two state
configurations of the state machine.”

(OMG-UML V1.3, §2.12.4.7)
The meaning of this is that an active object only processes one event at a time. It can, though, receive
other events during that time and store them for later processing.
While the event processor is handling an event, it cannot process another one: the event dispatcher
will queue any incoming events. All incoming events targeted at the processor will pass through the
event dispatcher first, so the processor will never receive incoming events from something else than its
dispatcher. Therefore, the dispatcher knows with certainty when the processor enters the RTC step,
because it has just sent the corresponding event. Now, if we provide a way for the event processor to
tell the dispatcher that it leaves the RTC step, the dispatcher will have reliable knowledge of when the
processor is busy and when it is ready (idle and ready to receive an event).
From that model we can define a generic state machine for an event dispatcher. The dispatcher shown
in Fig.5 uses a variable to store the type of message from transition to transition.
A specification containing unexpected and/or erroneous behaviors may lead to the flooding of an event
dispatcher. Such flooding will be explored virtually ad infinitum, by a test generator toolset. For that
reason, we add another safeguard by limiting the size of the FIFOs. When a dispatcher’s FIFO is full,
the dispatcher will deadlock. This way the execution path will be signaled as faulty

41

Empty

Dequeue

Waiting

? Message1
! Message1

[msg = Message1]
! Message1

? MsgProcessed
[non-empty queue]
Dequeue to msg

?MsgProcessed
[empty queue]

? Message1
Queue Message1

? Message2
! Message2

[msg = Message2]
! Message2

? Message2
Queue Message2

Fig.5 – Generic dispatcher with two possible events

2.7 Transitions and availability
Splitting transitions in the event processor will not really change the semantics of exe cution. In fact, it
will even enhance the simulation. Consider, for instance, that Object 1 sends two events (a, b) to Object
3, and Object 2 also sends one event (c) to Object 3. The apparent randomness of task scheduling can
change the exact order in which Object 3 will receive the events (c, a, b / a, b, c / a, c, b). The third
case, in order to be simulated by a test generator, requires that a and b be sent on different transitions
(and this is forced in A-EIOLTS, only one Rendezvous per transition). In fact, the apparently
burdensome restrictions of A-EIOLTS concerning the sending and receiving of events have positive
impact, since the forking of execution paths will often come from such reordering of events.
The event dispatcher has a duty towards all the event processors: it must always be ready to receive an
event. But even the event dispatcher needs some time to store, restore or send an event; during that
time it is not available. There also are other considerations about exactly what type of communications
occurs between active objects. For this reason, it is very common that event queuing and dispatching
operations be executed in a critical section. A critical section is a section where a thread has exclusive
and absolute priority over all threads in a set of threads , a section of execution that will not be
interrupted until it ends. In the case of queuing and dispatching of messages, the set of threads is the
whole system, and such operations are considered globally atomic.

2.8 Generic event processor
As explained earlier, the event processor does not need to be able to receive messages at any time, the
dispatcher takes care of that aspect. On the other hand, the processor knows what state the object is in,
and what events it may receive. We shall build a generic event processor in several steps. As an
example, consider the UML statechart diagram in Fig.6 :

 Message1 / O2->Message4

Message2 / 02->Message3

StateOne StateTwo

Fig.6 – Sample UML statechart diagram

Now let us translate this into a simple A-EIOLTS statechart diagram. The first problem is that the
dispatcher does not know what the processor is ready to receive, which means that if an unexpected
message arrives, the event dispatcher will still transmit it to the processor. Indeed, the dispatcher will
try to send a message the processor will never receive, since it will be waiting forever for the dispatcher
to send another message.
It might be interesting for the dispatcher to know that the active object did not change states. In fact, it
is interesting for the handling of deferred events, which will be explained further below. To distinguish
between messages that make the state machine change states (or, more precisely, that change states or
perform an external self-transition), and messages that do not, the event processor will return either
MsgProcessed on state change (or external self-transition), or MsgAck for messages that do not
cause state change (internal transitions).
Now we can write our new event dispatcher (see Fig.7). This one will not deadlock when the dispatcher
sends an unexpected message. Note that the event dispatcher should be changed accordingly to
handle the new MsgAck callback, however, for the moment, we will not detail it: the only necessary

42

modification, at this point, is to duplicate all transitions that have MsgProcessed as trigger event,
creating a twin transition with exactly the same clauses but triggered on MsgAck.

? Message1

StateOne StateTwo

Trans1

MsgProcBeforeOne

MsgProcBeforeTwo

Trans2

? Message2

 ! O2->Message4

 !Dispatcher ->MsgProcessed

! Dispatcher->MsgProcessed

! O2->Message3

MsgAckBeforeOne

 ?Message2
!Dispatcher->MsgAck

MsgAckBeforeOne

!Dispatcher->MsgAck

? Message1

!Dispatcher->MsgProcessed

Fig.7 – Event processor capable of handling unexpected events

2.9 Deferred events and parameters
UML includes a notion that is not present in A-EIOLTS: deferred events. For a particular state, it is
possible to specify that, although a particular event may not be handled in that state, the object must
retain this event. When the state changes (or when an external self-transition is fired), the deferred
event is examined again. If, in this new state, the event cannot be handled, the deferred event is
consumed without side effect; if it is handled, the corresponding transition is fired. If the event is again
deferred, it is stored again for later use, and so on.

 LIST OUTPUT

Deferred events are
inserted here

Deferred
event

Deferred
event

Deferred
event

Event Event Event (empty)

Incoming events are
inserted at the back

Next event
Iterator

The iterator starts at
the head of the list on

each state entry

The iterator never goes past the first
regular event (The other regular events

will drop naturally to this position)
Fig.8 – Theoretical implementation of a FIFO with improved deferred event handling

When the processor consumes an event, deferred or regular, without leaving the state, it is pointless to
try again the first events of the queue that were not eligible. Not only so, but if a new deferred event is
added while the state machine is in a particular state, it will not be able to fire a transition at least until
the next state change. For this reason, we can define an iterator that will “remember” the next event to
be processed (see Fig.8).

Upon each state change, the iterator will be reset to the head of the FIFO, conforming to the fact that
deferred events have priority. If the iterator reaches the first regular event, it will not go further since
there will always be an event in that slot ready to be transmitted to the processor, unless all the non-
deferred events have all been processed.

Until now, we have always considered simple events with no parameters, but it may be comfortable for a
user to be able to send messages with parameters. Storing parameters in a FIFO is easy. Instead of
pushing only the message ID, we push the message ID and all its parameters. When a message has to
be popped, the first POP operation will retrieve the message ID. The dispatcher will therefore know how
many parameters follow in the FIFO and will immediately pop them out.

43

2.10 About implementation
The generator has been developed using Objecteering’s UML Profile Builder. The profile builder allows
the user to extend the capabilities of Objecteering, by either using standard UML extension mechanisms
(stereotypes, tagged values…) or adding behavior using the J language.
J is a programming language specific to Objecteering. The main feature of the J language is its ability to
navigate the meta-model: the model of the current project is available in memory and navigable
according to Objecteering’s meta-model, which is very close to the standard UML meta-model.

3. The AGATHA kernel
After presenting the transcription from our UML models to A-EIOLTS, we describe in this section the
main principles that AGATHA is based upon, and that keep the combinatorial explosion problem at bay.
We shall see how AGATHA uses different academic techniques in order to compute the behaviors of
the system.

3.1 AGATHA positioning
There exist several ways to validate systems specifications. A first one consists in theorem proving and
model checking [9]. These kinds of techniques have proved successful for the validation of critical
parts of systems. But two major drawbacks to these techniques remain: the combinatorial explosion due
to variable domains, for the model checking; and a need for high-level skills from the developer –who
must be aware of formal methods fundamentals – for theorem proving.
Automatic test generation is another way to tackle the problem of systems validation. Conformance
testing is the most well-known part of this domain. Though AGATHA is able to generate tests for the
implementation, discussion of this feature falls beyond the scope of this paper. Our first purpose is to
validate the specification itself, and by the way generate tests in order to simulate them in the
specification.
Most validation tools use enumerative techniques and are therefore limited by the combinatorial
explosion problem when trying to exhaustively identify the execution tree of a system. Several
validation tools focus verification on particular aspects: test purpose [10], temporal properties [11],
etc…
The solution we wanted to build into AGATHA is an exhaustive symbolic path coverage. Notice that
this criterion will help, in the future, using AGATHA for verification. If we want to demonstrate the
truthfulness of a property on a specification, because of the exhaustivity obtained with AGATHA we
just have to demonstrate it on the obtained paths.
The following subsections are an overview of the different academic techniques used in AGATHA in
order to reach this exhaustive path coverage.

3.2 Main principle: symbolic execution
AGATHA uses “symbolic execution” as defined by [12], [13], [14]. The major drawback of numeric
techniques is the comb inatorial explosion due to variable domains. These domains can be huge,
sometimes even infinite. Symbolic calculus allows the handling of such domains because computing all
the behaviors is not equivalent to trying all the possible values for inputs. Instead of giving values for
inputs, they keep their status of symbol all execution long.
So each behavior no longer depends on the result of a calculus being completely performed but on an
expression representing constraints on the variables being denoted by the symbols of entries. Each
transition fired from a point of the execution adds a new constraint on the variables. The entire
constraint, at any point of the execution, is called "path condition".
First, a short comparison between a symbolic state and a numeric state: a numeric state is defined by
the state in the automata and by the numerical values of the variables, as opposed to a symbolic state,
which is defined by the state, the symbolic values of the variables and the path condition (see Figure 9
for a short example).
A symbolic state may represent an infinite set of numeric states. The execution tree that is the result of
AGATHA calculus is a finite tree of symbolic states. Because AGATHA is exhaustive and strives to be

44

minimal, we want the execution tree to be as short as possible. Now if we want to detect as many
redundant paths as possible we need to use reduction procedures.

3.3 Reduction procedures
The construction of the execution tree is subordinate to reduction procedures in order to eliminate as
many redundant paths as possible with the following tactics:
• Cut "empty" path conditions when detected both from a Boolean criteria or polyhedral criteria. We

use Presburger tools and theorem provers to achieve that.
• Avoid computation of a path deductible from another modulo a interleaving detection less

sophisticated than in [15]: an internal transition without any temporal constraint with other
transitions.

• Compute comparison procedures for each symbolic node and refer to an already existing
symbolic.

The n-tuple of a symbolic node is the list of the actual control node for each of the n concurrent
modules. These three reduction procedures are necessary to avoid the state explosion problem. We use
several different heuristics to compute comparison procedures for each symbolic node:
• ControlNode procedure: two symbolic nodes are equivalent if the two n-tuple of control nodes

are equal.
• Inclusion procedure: two symbolic nodes are equivalent if their n-tuple are equal and if the

variables domains of one are included in the other.
• Equality procedure: two symbolic nodes are equivalent if their n-tuple are equal and if their

variables domains are equal.
But it is sometimes also useful to introduce abstractions to reduce complexity. We currently work on
automating several different abstractions. It is important to notice that in many specifications, there is
no human intervention to abstract or to adapt the specification and obtain the results. With an abstract
model of the specification, the AGATHA calculus always terminates and therefore the obtained
execution graph is exhaustive.

3.4 Simplification procedures
The deeper a point of execution, the bigger the expression representing its path condition. Symbolic
expressions of variables may also rapidly grow. That is why a simplification procedure must be applied
"on the fly" in order to shorten expressions and detect useless paths [16].
As of today we use a simplifier based on rewriting techniques. The rewriting engine is Brute [17], Brute
is a part of the CafeOBJ toolset. The rewriting rules file of AGATHA is actually composed of more than
three hundred rules. These rules allow both to maintain symbolic expressions within a reasonable size
range, and to obtain normal forms for the expressions, easing the comparison between expressions
needed in algorithms such as comparison procedures.
We also use a polyhedric tool, Omega [18], in order to compute the inclusion and equality procedures.
Using this tool we are able to compare variables domains of two symbolic nodes.

Consider the transition in Figure 2:
TRANS
FROM state1
TO state2
WHEN input(x)
PROVIDED x > 0
OUPTUT ok
BEGIN
a := a + x ;
END;

For the initial state:
Numeric State = (s1, 0) for a0 = 0
Symbolic State = (s1, a0, true) that includes (s1, 0)

For the final state:
Numeric State = (s2, 1) for x = 1
Symbolic State = (s2, a0 + x, x >0) that includes (s2, 1)

Fig.9 – Comparison between numeric and symbolic

45

3.5 Composition
The symbolic execution process is performed on one module, but the global application (historically
AGATHA was designed to validate concurrent embedded systems) is generally composed of many, so
they have to be merged.
There are two possible ways to merge modules. The first solution is to use the composition introduced
by Milner [19]. The global module is made out of the transitions of its components, except those that
are synchronized by a rendezvous, which are replaced by an equivalent transition obtained by
eliminating the exchanged parameter.
The other solution is to compute the symbolic execution on each module first and then merge the
results to obtain the global application behavior. The major benefit of this latter approach is the
parallelization of the calculus: execution trees for each module can be computed separately.
At the moment only the first solution is implemented in AGATHA. The second option will be integrated
soon. But it is already possible to compute the execution tree on a subset of selected modules of the
specification. All the unselected modules are considered as the environment, messages from these
modules can occur in all the possible orderings with free parameters.

3.6 Constraints solvers
Once the execution tree is computed, the whole behavior of the system is exhibited. Livelocks and
deadlocks are visible. We use the DaVinci [20] graphical interface to represent the execution tree. A
constraints solver may then be used to get the appropriate values for symbolic variables satisfying path
conditions and generate numerical test input sequences. AGATHA can use two different constraints
solvers: the Presburger tool Omega or Con’Flex [21]. We elect to generate one numeric test for each
symbolic test. Each symbolic test represents a equivalence class of numeric tests, the constraints
solver compute only one solution for each path condition. In the case of a UML specification the format
of this numeric test is a sequence chart diagram.

4. Examples
In this section, we present a “toy” example to illustrate the validation and especially the automatic test
generation for restricted UML diagrams within the AGATHA toolset.

4.1 The Elevator
We define a simple version of an elevator specification. We define three classes: one for recording
stages asked by the user, one for managing the engine of the elevator and one for managing the
elevator and the interactions between the stage recorder and the engine manager. We also define two
actors that represent external systems: the user and the elevator itself. So we design the class diagram
as shown in Fig.10. Moreover and as we said before, we need a collaboration diagram for highlighting
the different interactions between classes and external systems (see Fig.10 too).

/StageRecord_1:StageRecord /LiftManager_1:LiftManager

/EngineManager_1:EngineManager

/User_1:User
/Engine_1:Engine

call

button

ack

movement_order

engine_control

init_stage

reached_stage

asked_stage

departure

stopped_cabine

crossed_stage
init_engine

LiftManager

current_stage:integer
asked_floor:integer
initial_stage:integer

asked_stage(x:integer)
ack()
crossed_stage(x:integer)
stopped_cabine()
departure(x:integer)

StageRecord

ask_stage:integer

call(x:integer)
reached_stage()
init_stage()

EngineManager

direction:{up, down, stop}

movement_order(x: :{up, down, stop})
init_engine()

User

button(x:integer)

Engine

engine_control(x:integer
)

1 *

1

1 1

1

1 1

1

1

Fig.10 – Class diagram and collaboration diagram

For each class we build a state machine that defines the behavior (see Fig.11 and Fig.12).

46

movement_order[x=stop] Init

Idle

Occupy

/asked_stage:=0;

call/asked_stage:=x;
User_1->button(asked_stage);

LiftManager_1->asked_stage(asked_stage);
reached_stage

init_stage
Off

On

movement_order[x<>stop]/direction:=x;
LiftManager_1 ->ack();

Engine_1->engine_control(direction);

direction:=stop;

movement_order[x=stop]/direction:=x;
LiftManager_1 ->ack();
Engine_1->engine_control(direction);

movement_order[x<>stop]/direction:=x;LiftManager_1 ->ack();

Init

init_engine

Fig.11 - State machines for the stage recorder (left) and the engine manager (right)

Wait

departure/StageRecord_1->init_stage();
EngineManager_1->init_engine();initial_stage:=x;
current_stage:=initial_stage;asked_floor:=initial_stage;

Wait_ack_on

asked_stage[x>current_stage]/
EngineManager_1 ->movement_order(up);

asked_floor:=x;

asked_stage[x<current_stage]/
EngineManager_1->movement_order(down);
asked_floor:=x;

On ack

Wait_ack_stop

crossed_stage[x<>asked_floor]/
current_stage:=asked_floor;

crossed_stage[x=asked_floor]/current_stage:=asked_floor;
EngineManager_1->movement_order(stop);

Stop

ack

stopped_cabine/StageRecord_1->reached_stage();

asked_stage[x=current_stage]

Init

Fig.12 – State machine of the lift manager

4.2 Running the toolset
The AGATHA toolset works with three main steps: the translation of the UML specification into the A-
EIOLTS formalism, the generation of the symbolic test cases and the translation of these symbolic test
cases into UML sequence diagrams.

4.2.1 Translation
The translation of the UML specification into the A-EIOLTS begins with splitting the initial model. With
this first-level translator, composed transitions are split into several transitions. As an example for the
stage recorder, the transition between Idle and Occupy is split in 3 sub-transitions with two new states
(see Fig.13).

Init

Idle

Occupy

/asked_stage:=0;

call/asked_stage:=x; reached_stage

init_stage

S2
« Internal »

User_1->button(asked_stage);
LiftManager_1->asked_stage(asked_stage);

S1
« Internal »

Fig.13 – Split statemachine for the stage recorder

The state machine flattened in a simple diagram can be easily translated in A-EIOLTS formalism. This
makes certain transitions atomic and enables more precise analysis of the specification.
The second translator generates the model using an A-EIOLTS formalism. Each class is mirrored by two
A-EIOLTS modules: one corresponding to UML’s event processor (close to the state machine) and one
corresponding to UML’s event dispatcher.

4.2.2 Generation of symbolic test cases
The tool computes a symbolic execution tree from the A-EIOLTS specification and each path of this tree
represents a symbolic test case.

47

In this example, let us look closer on the construction of the symbolic tree (see Fig.14). For each
symbolic state of the tree we provide the value of variables as a 5-tuple : [StageRecord.asked_stage,
LiftManager.current_stage, LiftManager.asked_floor, LiftManager.initial_stage,
EngineManager.direction] and we provide the conjunction of all encountered guards (also called path
condition).
The symbolic execution tree begins with the initial state of each state machine: Init, Init, Init, the 5-tuple
is equal to [0,$,$,$,stop] where $ represents a non-affected variable and the path condition (PC) is
equal to TRUE. This $ value identifies variables that are used without being initialized before.
The first fireable transition is from Init to Wait of the lift manager state machine. This transition waits for
an external message (departure) from the engine that initializes the elevator and the initial stage. Then
events are sent to initialize the stage recorder (StageRecord_1->init_stage()) and the engine manager
(EngineManager_1->init_engine()). The 5-tuple is equal to
[0,departure_1,departure_1,departure_1,stop] where departure_1 represents the value received by
the message and the PC remains TRUE.
At each step, the tool computes all the fireable transitions and, for each case, the 5-tuple and the PC.

 #1 : Init, Init, Init
[0,$,$,$,stop] TRUE

#2 : Init, Wait, Init
[0,departure_1,departure_1,departure_1,stop] TRUE

#16 : Init, Wait, Off
[0,departure_1,departure_1,departure_1,stop] TRUE

#3 : Idle , Wait, Init
[0,departure_1,departure_1,departure_1,stop] TRUE

#4 : Idle, Wait, Off
[0,departure_1,departure_1,departure_1,stop] TRUE

#5 : Occupy , Wait, Off
[call_1 ,departure_1,departure_1,departure_1,stop] TRUE

#7 : Occupy, Wait_ack_on, Off
[call_1,departure_1,asked_stage_1,departure_1,stop]

departure_1>asked_stage_1

#6 : Occupy, Wait, Off
[call_1,departure_1,departure_1,departure_1,stop]

call_1=departure_1

#15 : Occupy, Wait_ack_on, Off
[0,departure_1, asked_stage_1 ,departure_1,stop]

departure_1<asked_stage_1

#8 : Occupy, Wait_ack_on, On
[call_1,departure_1,asked_stage_1,departure_1, up]

departure_1>asked_stag e_1

#9 : Occupy, On, On
[call_1,departure_1,asked_stage_1,departure_1,up]

departure_1>asked_stage_1

#10 : Occupy, On, On
[call_1, crossed_stage_1,asked_stage_1,departure_1,up]

departure_1>asked_stage_1 AND crossed_stage_1<>asked_stage_1

#10 : Occupy, On, On
[call_1, cross ed_stage_2,asked_stage_1,departure_1,up]

departure_1>asked_stage_1 AND crossed_stage_1<>asked_stage_1 AND crossed_stage_2<>asked_stage_1

#11 : Occupy, Wait_ack_stop, On
[call_1, crossed_stage_1,asked_stage_1,departure_1,up]

departure_1>asked_stage_1 AND cossed_stage_1=asked_stage_1

#12 : Occupy, Wait_ack_stop, Off
[call_1,crossed_stage_1,asked_stage_1,departure_1, stop]

departure_1>asked_stage_1 AND crossed_stage_1=asked_stage_1

#13 : Occupy, Stop, Off
[call_1,crossed_stage_1,asked_stage_1,departure_1,stop]

departure_1>asked_stage_1 AND crossed_stage_1=asked_stage_1

#14 : Occupy, Wait, Off
[call_1,crossed_stage_1,asked_stage_1,departure_1,stop]

departure_1>asked_stage_1 AND crossed_stage_1=asked_stage_1

Fig.14 – Symbolic execution tree

For each computation, the tool compares the new symbolic state with the symbolic states already
computed. If the control nodes are the same, domains of variables are compared. If there exists a
numeric 5-tuple that verifies the constraints of the new symbolic state but not the constraints of the old
symbolic state, then computing continues else it stops. For example, in symbolic state #9 Occupy, On,
On, the 5-tuple is equal to [call_1,departure_1,asked_stage_1,departure_1,up] with the PC equal to

48

departure_1>asked_stage_1. If the tool selects the transition from On to On of the lift manager, then
the new symbolic state corresponds to #10 Occupy, On, On, the 5-tuple is equal to
[call_1,crossed_stage_1,asked_stage_1,departure_1,up] with the PC equal to
departure_1>asked_stage_1 AND crossed_stage_1<>asked_stage_1. The control nodes are
identical but the 5-tuple [2,1,2,0,up] verifies [call_1,crossed_stage_1,asked_stage_1,departure_1,up]
but not [call_1,departure_1,asked_stage_1,departure_1,up] because current_stage=1 is different
from initial_stage=0. The tool continues execution and fires the same transition. The symbolic state
corresponds to #12 Occupy, On, On, the 5-tuple is equal to
[call_1,crossed_stage_2,asked_stage_1,departure_1,up] and the PC is equal to
departure_1>asked_stage_1 AND crossed_stage_1<>asked_stage_1 AND
crossed_stage_2<>asked_stage_1. That time domains of variables are included and all solutions that
verify the first 5-tuple verify the second. The execution stops and the symbolic state is mapped to state
#10.
Let us focus on state #5. The state corresponds to Occupy, Wait, Off, the 5-tuple is equal to
[call_1,departure_1,departure_1,departure_1,stop] with the PC equal to TRUE. The tool can fire the
transition of the lift manager from Wait to Wait, the new state is Occupy, On, On , the 5-tuple remains the
same the PC equal to call_1=departure_1. If we look at the state machines ,we can see that there is no
more fireable transition. In fact, the stage recorder, in state Occupy, waits for the reached_stage
message; the lift manager, in state Wait, waits for the asked_stage message; and the engine manager, in
state Off, waits for the movement_order message. None of these messages can be sent and the system
is blocked. The tool detects a deadlock.
Also note that the path condition of state #8 has been simplified. In fact the value of the PC is
departure_1>asked_stage_1 AND up<>stop, but by definition up<>stop. Thanks to rewriting rules
the path condition is simplified.
On the symbolic execution tree AGATHA can also detect some dead code like the loop on the state On
of the engine manager. That transition is never used in each path of the symbolic tree and so this
transition is unreachable.

4.2.3 Results
The tool provides the symbolic execution tree. Each path of the tree corresponds to a symbolic test
case and each symbolic test case is translated into an UML sequence diagram.

 /StageRecord_1 /EngineControler_1

/Engine_1
departure

init_stage
call

button
asked_stage

treatment of
asked_stage

/LiftManager_1

/User_1

init_engine

Fig.15 – Sequence diagram for the first path

On these sequence diagrams, the messages exchanged by the system appear. For our example,
AGATHA computes a symbolic execution with twelve paths. For the first path, the first symbolic state
corresponds to Init, Init, Init and the second corresponds to Init, Wait, Init. The lift manager received
the departure message and then sent the init_stage message the stage recorder and the init_engine
message to the engine recorder. The third symbolic state corresponds to Idle, Wait, Off. The stage
recorder received the init_stage message. The fourth symbolic state corresponds to Occupy, Wait, Off.
The stage recorder received the call message and sent the button message to the user. And so on until
the path ends (see Fig.15).
In this example, we have just presented a symbolic test case. For each symbolic path the AGATHA
toolset generates a symbolic sequence diagram. On each sequence diagram you can generate at least
one instantiation of the symbolic test case and then obtain numeric variables for parameters of call
events. For the first path of our example, the 5-tuple is equal to

49

[call_1,departure_1,departure_1,departure_1,stop] with the PC equal to call_1=departure_1. A
numeric solution can be [1,1,1,1,stop].
We obtain these numeric sequence diagrams by using a constraints solver. Note that these tests can be
useful for the future implementation.

4.3 Industrial example
Our team also participates in a European project, AIT-WOODDES. The main goal of this project is to
deliver an environment for the design of embedded systems. In that context we work with the industrial
PSA on an embedded navigation system for cars and we automatically generate a set of tests for this
specification with our toolset.

5. Conclusions and perspectives
In this article we have described our toolset associated with the semantics of UML statecharts, allowing
software developers to validate UML specifications. We have presented our tool, based on the
AGATHA system, which is transparent for the user and definitely user-oriented. Indeed the user drives
all of the validation process.
Furthermore the generated tests produce an exhaustive path coverage by using a melting-pot of formal
techniques. The toolset also detects several types of deadlocks, livelocks and conception errors; it can
create instantiated tests with the help of a constraints solver, not only on simple specifications but also
on specifications of real industrial concurrent embedded systems.
Our tool is used as part of the AIT-WOODDES European project that aims at developing a full software
workshop based on UML and targeting automotive embedded systems. The AGATHA system is also
involved in projects with SDL specifications for aerospace applications with EADS. A version for
statecharts [22] of STATEMATE is currently developed for PSA for embedded car system
specifications [23]. The AGATHA system was also used with ESTELLE industrial specifications for
EDF [24].
Our tool, in particular the UML translator, should be enhanced with all the power of the UML standard
such as the notion of hierarchy in statechart diagrams. Usually to specify a system with UML a
developer starts with the definition of some sequence diagrams. We can add a functionality that allows
testing whether these sequence diagrams are compatible with the set of sequence diagrams computed
by AGATHA.
Other applications are foreseen: enriching AGATHA with theorem proving –this should be made with
backward symbolic execution–- in order to prove properties about the system. We could also imagine
connecting an existing model checker to AGATHA. For very large or complex systems AGATHA will
also embed new automatic simplification procedures, not working on generated expressions, but on the
model itself, and based on abstraction principles. Finally, the possibly numerous generated numerical
tests may exceed the capacity of an industrialist in terms of cost and time. With respect to criteria
defined by the user, a selection of relevant tests will be performed, along with an estimate of their
covering.

6. Acknowledgements
The authors would like to thank the FMICS 2002 reviewers, Sébastien Gérard and the whole ACCORD
team, Pantxoa Amorena, François Terrier, Alain Faivre, Jean-Pierre Gallois and all of the AGATHA team
for their help and their constructive comments and suggestions.

This work is supported by the European committee for the AIT-WOODDES IST project.

7. References
[1] Rumbaugh, I. Jacobson, G. Booch, The Unified Modelling Language Reference Manual, Reading,

MA: Addison-Wesley, 1998.
[2] AIT-WOODDES Project N IST-1999-10069, http://wooddes.intranet.gr/ .

50

[3] U. Buy, A. Orso, M. Pezzè: Automated Testing of Classes, ISSTA’00.
[4] J. Hartmann, C. Imoberdorf, M. Meisinger: UML-Based Integration Testing, ISSTA’00.
[5] Objecteering Tool version 5, Softeam Paris, 2001, http://www.softeam.fr.
[6] S. Gérard, N. S. Voros, C. Koulamas, Efficient system modeling of complex real-time industry;

networks using the ACCORD/UML methodology, DIPES 2000
[7] H. ISO/TC97/SC21: Estelle - A Formal Description Technique Based on an Extended State

Transition Model, ISO/TC97/SC21, IS 9074, 1997.
[8] D. Lugato, N. Rapin, J.-P. Gallois, Verification and tests generation for SDL industrial specifications

with the AGATHA toolset, Proceedings of Workshop on Real-Time Tools, CONCUR’01.
[9] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking, The MIT press 1999.
[10] J. -C. Fernandez, C. Jard, T. Jeron, C. Viho, Using on the fly verification techniques for the

generation of test suites, CAV’96.
[11] S. Yovine. Kronos: A verification tool for real time systems, Springer International Journal of

Software Tools for Technology Transfer, Vol. 1, Nber 1/2, October 1997.
[12] L. A. Clarke. A system to generate test data and symbolically execute programs, IEEE Transactions

on software Engineering, vol. SE-2, nº3, September 1976, pp 215-222.
[13] J.C. Huang. An approach to program testing, ACM computing surveys.7(3): 113-128, September

1975.
[14] J. C. King. Symbolic execution and program testing, Communication of the ACM,19(7). July 1976.
[15] P .Wolper, P. Godefroid. Partial-Order Methods for Temporal Verification, Université de Liège,

Institut Montefiore, CONCUR 930 - Hildesheim, Belgium, August 1993.
[16] J.Chabin, J.-Y. Février, J.-P. Gallois, S. Ramangalahy, Génération de tests par exécution symbolique,

Journées du GDR programmation, November 1995, Grenoble.
[17] M. Ishisone, T. Sawada, Brute: brute force rewriting engine, GAIST, January 2001,

http://www.theta.theta.ro/cafeobj.
[18] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, D. Wonnacott, The Omega Library version

1.1.0, University of Maryland, November 1996, http://www.cs.umd.edu/projects/omega.
[19] R. Milner. Communication and concurrency, Prentice Hall International, 1989.
[20] M. Worner, M. Frohlich, DaVinci Tool version 2.1, Bremen University, July 98,

http://www.informatik.uni-bremen.de/davinci.
[21] J-P. Rellier, F. Vardon, CON’FLEX version 1.2, Manuel de l’utilisateur, INRA, January 98,

http://www-bia.inra.fr/ .
[22] D. Harel, Statecharts: a Visual Formalism for Complex Systems, Science of Computer Programming,

vol. 8, pp. 231-274, 1987.
[23] J.-Y. Pierron, J.-P. Gallois, E. Fievet, A. Lapitre, D. Lugato, Validation de systèmes industriels par le

test symbolique sur spécification STATEMATE. ICSSEA’00.
[24] J.-P. Gallois, A. Lapitre, P. Lé, Analyse de spécifications industrielles et génération automatique de

tests. ICSEA’99.

Burguillo, Llamas, Fernández, Robles

Heuristic-driven Techniques for Test Case
Selection

J.C. Burguillo, M. Llamas, M.J. Fernández 1

Departamento de Ingenieŕıa Telemática
Universidad de Vigo

Vigo, Spain

T. Robles 2

Departamento de Ingenieŕıa Telemática
Universidad Politécnica de Madrid

Madrid, Spain

Abstract

We propose an approach to testing that combines formal methods with practical
criteria, close to the testing engineer’s experience. It can be seen as a framework to
evaluate and select test suites using formal methods, assisted by informal heuristics.
We also introduce the formalism of enriched transition systems to store information
obtained during the testing phase, and to adapt classical test generation techniques
to take advantage of the possibilities of the new formalism.

1 Introduction

In the context of Protocol Engineering, test generation algorithms are used to
obtain a set of test cases from a given specification, intended to detect errors in
non-conforming implementations. However, the number of test cases needed
to guarantee an exhaustive coverage may be too large, even infinite. Therefore,
execution of all potential test cases may be infeasible. As a consequence, in
practical cases it is necessary to select a subset of all possible test cases prior
the test execution phase. The reduction of the initially generated test case set
is known in the literature as test case selection.

Test case selection should not be performed at random. An appropriate
strategy should be applied to obtain a valuable test case collection, in the sense

1 Email: [jrial,martin,manolo]@det.uvigo.es
2 Email: robles@dit.upm.es

c©2002 Published by Elsevier Science B. V.

Burguillo, Llamas, Fernández, Robles

that it should detect as many non-conforming implementations as possible.
For software testing, some criteria are available, like the division in equivalence
partitions [12] or the test proposal selection in protocol testing [9].

On the other side, test case selection should not be based only on the sys-
tem’s formal specification. To select the most valuable test cases, additional
information, external to the corresponding specification formalism, should also
be used. Such information may consider most frequent errors committed by
implementors, most harmful errors, most difficult to implement features, crit-
ical basic functionalities, etc.

In the field of Formal Description Techniques some proposals have been
made to address the test case selection problem, key results may be found in
[6,15,16,17]. T. Robles [13] introduced concepts for risk, cost and efficiency
for a test case collection, which are revisited in this paper. This approach is
based on the estimation, from the testing engineer’s experience, of the risk
involved when testing a system implementation. It formalises and simplifies
the selection of test cases, and can be applied to most practical problems.
This approach is similar to that presented in [15].

Thus, this paper proposes a method to evaluate and select test cases from
practical criteria, close to the testing engineer’s experience. Our aim is to
provide implementable, and computationally feasible criteria. Additionally,
we want the proposed methodology to be easily configurable for testing engi-
neers, who can provide their experience through the introduction of heuristics
to facilitate the testing of key aspects in a system, or specific parts of a system
that are more prone to errors.

The next two sections discuss the theoretical background that serves as the
foundation of our experience. Section 2 presents some general definitions and
notation about the supporting representation framework and formal testing,
and Section 3 presents our approach to test case selection. Finally, Section 4
offers a summary of the work described and some conclusions.

2 General Definitions and Notation

Along the next paragraphs we discuss basic theoretical concepts and nota-
tion related to testing and test case selection. First, we briefly introduce
Labelled Transition Systems. Then, we provide some basic concepts from for-
mal testing. After this, we introduce risk, coverage, cost and efficiency as the
supporting heuristics to assist the testing engineer along test case selection.

2.1 Labelled Transition Systems

Labelled Transition Systems (LTS) will be the basic model to describe the
behaviour of processes, such as specifications, implementations and tests.

Definition 1 A labelled transition system is a 4-tuple < Stat, L, T, s0 >
where Stat is a countable, non-empty set of states; L is a countable set of

52

Burguillo, Llamas, Fernández, Robles

labels; T ⊆ Stat × (L ∪ {i}) × Stat is the countable set of transitions and
i denotes a special internal action, referred as τ in some models [11]; and
s0 ∈ Stat is the initial state.

An element (s, µ, s′) ∈ T is represented as s−µ → s′. We use the following
notations (sets) derived (constructed) from the transition relation:

s = ε ⇒ s′ : s = s′ or s − i − . . . → s′

s = a ⇒ s′ : ∃s1, s2 ∈ Stat such that s = ε ⇒ s1 − a → s2 = ε ⇒ s′

s = σ ⇒ s′ : ∃{s1, ..., sn−1} ⊆ Stat, and a trace σ = a1 . . . an

such that s = a1 ⇒ s1 = · · · ⇒ sn−1 = an ⇒ s′.

s = σ ⇒ : ∃s′ ∈ Stat such that s = σ ⇒ s′

s �= σ ⇒ : � ∃s′ ∈ Stat such that s = σ ⇒ s′

Tr(P) : {σ ∈ L∗ | P = σ ⇒}
Init(P) : {a ∈ L | P = a ⇒}
P after σ : {s′ | P = σ ⇒ s′}
Ref(P, σ) : {A ⊆ L | ∃s′ ∈ (P after σ) and ∀a ∈ A, s′ �= a ⇒}
Path(P) : {ϕ ∈ T ∗ | P − ϕ → s′, s′ ∈ Stat}

The symbol L∗ (respectively T ∗) denotes the set of strings (sequences,
traces) constructed using elements from L (respectively T). A trace σ ∈ L∗

is a finite sequence of observable actions over L, where ε denotes the empty
sequence. The special label i �∈ L represents an unobservable, internal action,
used to model non-determinism. Thus = ε ⇒ represents a null transition or a
sequence of transitions including only internal actions (i.e. traces do not have
internal actions). We use t ≪ ϕ to denote that transition t appears in the
path ϕ.

We represent an LTS by a tree or a graph, where nodes represent states
and edges represent transitions. Given an LTS P =< Stat, L, T, s0 >, we
write P = σ ⇒ to represent transitions from the initial state of P and must
be considered as a syntax sugar. When a given state does not accept further
actions (i.e. deadlock state), we label it as stop.

Tr(P) is the set of traces accepted by process P , Init(P) the set of labels
from L accepted by P , and Ref(P, σ) is the set of refusals of P after trace σ.
Finally, Path(P) is the set of transition sequences accepted by P . We denote
the class of all labelled transition systems over L by LTS(L). LTS model the
semantics of languages used to describe distributed and concurrent systems
like LOTOS [8], CSP [1] or CCS [11], among others.

53

Burguillo, Llamas, Fernández, Robles

2.2 Formal Testing Concepts

Concerning testing, it is important to define a relation to model the confor-
mance of a implementation with its specification. There are several relations
in the literature that may be selected [14]. As we want to compare our frame-
work with other approaches and reuse the existing theory, we selected the
conformance relation conf described in [2,14]. It has the advantage that only
the behaviour contained in the specification must be tested, reducing the test
space. The relation conf is defined as follows:

Definition 2 (Conformance: conf) Let I, S ∈ LTS(L), we say that I
conf S if and only if for every trace σ ∈ Tr(S) and for every subset A ⊆ L
the following proposition holds: If A ∈ Ref(I, σ) then A ∈ Ref(S, σ)

In case σ �∈ Tr(I) we assume Ref(I, σ) is empty.

To decide about the success of a test case we use verdicts. Reference [10]
proposes three possible verdicts: Pass (pass, when the observed behaviour
satisfies the test), Fail (fail, when the observed behaviour is an invalid spec-
ification behaviour) and Inconclusive (inc, the observed behaviour is valid
so far, but it has not been possible to complete the test). These concepts are
formalised below [14]:

Definition 3 (Test case) A test case tc is a 5-tuple < Stat, L, T, v, s0 >,
such that < Stat, L, T, s0 > is a deterministic transition system with finite
behaviour, and v : Stat → {fail,pass, inc} is a function to assign verdicts.

Definition 4 (Test suite) A test suite or test collection ts is a set of test
cases: ts ∈ PowerSet(LTSt(L))

The execution of a test case is modelled by the parallel synchronous execu-
tion of the test case with the implementation under test (IUT). Such execution
continues until there are no more interactions, i.e. a deadlock is reached. Such
deadlock may appear because the test case tc reaches a final state, or when
the combination of tc and the IUT reaches a state where the actions offered
by tc are not accepted.

An implementation passes the execution of a test case if and only if the
verdict of the test case is pass when reaching a deadlock. As the implemen-
tation may have nondeterministic behaviour, different executions of the same
test case with the same IUT may reach different final states, and as a conse-
quence different verdicts. An implementation passes a test case tc if and only
if all executions of tc produce a pass verdict. This means that we should ex-
ecute every test case several times to obtain a final verdict, ideally an infinite
number of times.

Test generation algorithms provide test suites from specifications. Ideally,
an implementation must pass a test suite if and only if it conforms. Unfortu-
nately, in practice, such test suite would have infinitely many test cases. As a
consequence, in the real world we have to restrict ourselves to (finite-size) test
suites that can only detect non-conformance, but cannot detect conformance.

54

Burguillo, Llamas, Fernández, Robles

Table 1
Error Weighting

Target Parameter Range

Event RI(e) = EI(e) × II(e) (0,∞)

Implementation RI(S) (0,∞)

Measurement, Event MRI(e, ts) [0,∞)

Measurement, Implementation MRI(S, ts) [0,∞)

Legend. I: implementation under test; e: event in I; ts: test suite;
S: specification corresponding to I.

Such test suites are called sound.

2.3 Risk, Coverage, Cost and Efficiency

Through the next few paragraphs we introduce the concepts of error weight
or risk, coverage, cost and efficiency, which will support the comparison and
selection of test cases to be passed to an implementation.

To analyse the coverage obtained after testing an implementation we have
to take into account several factors. On one side, test cases are derived from
a formal object, i. e. the formal specification. As a consequence, after testing
an implementation we get a specific coverage level for the behaviours in the
specification. On the other side, coverage depends on the implementation itself
because, given a formal specification, the selected implementation technology
(i.e. programming language or programming tools) will be more or less prone
to errors.

Table 1 proposes some heuristics to a priori evaluate the influence of errors
in a given implementation, which will be used to select an adequate test suite.
RI(e) assigns a weight to a (possible) error, i.e. estimates the risk involved
in committing errors when implementing event e. It is calculated from two
values: an estimation of the chances of event e being erroneously implemented
(EI(e)), and an estimation of the impact of the corresponding error in the rest
of the system (II(e)). RI(S) estimates the chances for the implementation
not to conform to the corresponding specification, and measures the risk of
erroneously implementing S.

MRI(e, ts) represents the amount of risk for event e that can be detected
through a testing process using test suite ts, and MRI(S, ts) represents the
amount of risk for implementation I that can be detected using test suite
ts. Risk measurement for a single test case is a particular case where suite
ts is composed by a single test case. Note that, from the definitions above,
MRI(e, ts) ≤ RI(e) and MRI(S, ts) ≤ RI(S).

The underlying mathematical model we need is considerably simplified
through the assumption of independence among errors. However, in prac-

55

Burguillo, Llamas, Fernández, Robles

Table 2
Coverage Parameters

Target Parameter Range

Event KI(e, ts) = MRI(e,ts)
RI(e)

[0, 1]

Implementation KI(S, ts) = MRI(S,ts)
RI(S)

[0, 1]

Table 3
Cost Parameters

Target Parameter Range

Event CI(e) = PI(e) + XI(e) (0,∞)

Implementation CI(S, ts) (0,∞)

tice, errors are not independent from each other, as erroneous sentences in a
program may affect the evolution of other parts of the program. As a solu-
tion, correlation among errors is reflected in our model as error weight values,
that is, we model such interdependence through parameter II(e). Then, test-
ing engineers will estimate the correlation among errors, using available error
statistics and their own expertise, to define II(e) accordingly.

This can be seen as a compromise between a convenient mathematical
foundation and the need to consider error correlation in real cases. Note that,
independently of being supported by the underlying mathematical model or
through explicit parameters, getting the correlations between failures right is
crucial to get the most of the approach discussed in this paper.

From the parameters above, we define coverage as the quotient between
a measurement of the detection power of a test suite and a measurement of
the risk (c.f. table 2). KI(e, ts) represents the coverage for event e using
test suite ts, whereas KI(S, ts) represents the coverage for implementation I,
corresponding to specification S, using test suite ts.

When executing a test suite ts on an IUT we are checking whether some
of the error possibilities estimated have been materialised into actual errors.
If errors appear, they should be corrected. Conversely, if errors are not found,
our confidence increases. Given two test suites ts1 and ts2, using the parame-
ters above we can compare their coverage, and therefore their ability to detect
errors in an IUT. However, there is another factor when comparing test suites
that should be taken into account: the resources needed. To estimate this
aspect, we introduce a new parameter: the cost (c.f. table 3). CI(e) estimates
the cost of testing event e as the sum of the cost due to its implementation in
a test case (PI(e)) and the cost of executing that event on the implementation
(XI(e)). CI(S, ts) represents the cost of testing an implementation I using
test suite ts generated from specification S.

Using cost values we can better discriminate among several test suites.
Therefore, the next step will be to relate the parameters defined above to

56

Burguillo, Llamas, Fernández, Robles

obtain another reference to facilitate the selection of test cases. For this,
we define the efficiency of a test suite ts obtained from S (FI(S, ts)) as the
quotient between the coverage of that suite and the cost associated to its use
to test I.

FI(S, ts) =
KI(S, ts)

CI(S, ts)

The values of this new parameter are in the range [0,∞). Its values increase
when coverage increases and with cost reduction.

We need a procedure to calculate values for the heuristics above taking
into account our representation formalism, namely Labelled Transition Sys-
tems. We try to assess conformance for a system implementation from its
formal specification. Thus, we will take as a reference the risk involved when
implementing all events in the specification. In this way, we can formulate the
risk for a IUT as the sum of the risk values for its events.

�

S

�

a

stop

�

I1

�

a

stop

�

I2

�
�

�
���

i

stop

�
�
�
���

a

stop
Fig. 1. S, I1 and I2

�

S

�

send

S

�

I

�

send

s1�
�

�
���

send

I

�
�
�
���

i

stop
Fig. 2. S and I are recursive processes

On the other side, due to nondeterminism, practical test cases should be
executed several times to gain confidence on the testing process. For example,
consider the specification S in figure 1 and its implementations I1 and I2.
While the implementation I1 is equal to S and will always accept event a as
stated by S, implementation I2 sometimes executes an internal action and
then refuses event a. Obviously, this latter implementation does not conform
with S.

If we are testing a physical implementation, which may behave as I1 or
I2, we will need to execute several times a from the initial state in order to
discover if it conforms with S. Each time event a is accepted we increase our
confidence on the implementation. Conversely, if we obtain a single refusal we

57

Burguillo, Llamas, Fernández, Robles

can guarantee that the IUT does not conform. In other words, measurement
risk values vary along the testing process.

Additionally, the presence of recursive behaviours makes testing depen-
dent on the level of recursion where the test is passed. We name recursive
behaviours those ones that are self-instantiated. Consequently, the recursion
level will be the number of times a behaviour has been instantiated. For in-
stance, specification S in Figure 2 contains a recursive behaviour and never
stops. Again, to check a physical implementation of S that behaves as I in
Figure 2, we might need to execute many times event send to detect that
sometimes such event is refused. As a consequence, the risk measurement in-
volved when testing an event is spread along the successive levels of recursion
(i.e. successive event instantiations).

Taking into account both aspects, we can decompose the risk of every event
in an LTS (i.e. the weight assigned to errors in events) as:

RI(e) =
∞∑

r=1

∞∑

n=1

Rr,n
I (e) ≤ ∞

where Rr,n
I (e) represents the risk of event e when being tested for the n-th

time at recursion level r using a given test case. Then, the risk detection
power of a test suite ts becomes:

MRI(S, ts) =
∑

tc∈ts

∑

e∈E(tc)

Rce∑

r=1

Ne(r)∑

n=0

Rr,n
I (e)

where Rce and Ne(r) are respectively the deepest recursion level where event
e has been tested and the number of times we tested such event for every
recursion level. If test cases tc ∈ ts have a tree structure we can obtain
several possible values for every successful run of the test case. So, we may
measure the risk, a priori, using available statistics.

2.4 A Priori and a Posteriori Values

As the IUT is an entity whose behaviour is unknown, there may be differences
between what we desire to test and what we really test in practice. These
differences may be due to:

• Nondeterminism: due to nondeterministic behaviour in the implementa-
tion, it is possible that, in a first try, we cannot test those behaviours we
are interested in. Because of this, it may be needed to execute test cases
several times until we reach an appropriate result. New executions modify
coverage values.

• Failures: if we detect a non-conforming implementation, it may not be
possible to achieve the expected coverage because some test cases may not
be executable due to errors in the implementation.

As a consequence we can identify [7] two classes of cost and coverage values:

58

Burguillo, Llamas, Fernández, Robles

• A priori values, which are obtained when we estimate the risk measure-
ment and the cost to execute a test case tc assuming all possible implemen-
tation responses, as defined by the corresponding specification.

• A posteriori values, which are obtained after executing the test case tc.

3 Test Case Selection

Now, we will discuss our approach to test case selection, which is based on
a classical approach, as discussed below. But first we introduce Enriched
Transition Systems as a way to keep track of the structural information needed
to know those parts of the specification already tested.

3.1 Enriched Transition Systems

When we try to execute several test cases over an implementation, it would
be desirable to have access to the values of risk, cost and coverage obtained
along the process. For this, as discussed above, we need information about
recursion levels and testing iterations. Besides, if these values were available,
we could select new test cases depending on the results obtained from the ones
that have been already executed.

To maintain the information gathered after the execution of test cases we
define a new type of transition systems [5]:

Definition 5 (Enriched Transition System) An enriched transition sys-
tem (ETS) is a 5-tuple denoted by S =< Stat, L, T,N(t, r), s0 >, such that
< Stat, L, T, s0 > is a labelled transition system and N(t, r) is the number of
times transition t ∈ T is executed at recursion level r ∈ [1,∞).

The set of enriched transitions systems over the label set L is denoted
by ETS(L). Available notation and definitions for LTS(L) are extended to
ETS(L) defining them over the underlying transition system. Unlike classical
LTS, ETS are dynamic, i.e. for every transition t ∈ T , function N(t, r) changes
its values along the test process.

When we execute a test case on an implementation I generated from a
specification S, events in the enriched specification SE ∈ ETS(L) are up-
dated with the number of executions in every recursion level. In this way, we
maintain information concerning which behaviours or specification parts have
not been sufficiently tested. Note that from the specifications described as
ETS we can easily obtain risk and coverage values.

We assume that every transition has its own risk value. We also assume the
existence of an heuristic function for measuring risks fMR(e, r, n) → [0, RI(e)]
provided by the test engineer. This function will provide the risk measured
for individual executions in a given level of recursion. This function must be
convergent, and the sum over r and n of all risk measurements for a single
event e must be less than or equal to the risk of that event.

59

Burguillo, Llamas, Fernández, Robles

Example 1 A suitable risk measurement function can be defined as

MRr,n
I (e) =

RI(e)

2r+n
for r, n ≥ 1

Up to now, we have been considering transition systems without any ad-
ditional information about which parts may be recursively called, which parts
correspond to the main process, etc. In other words, when we traverse a plain
LTS we do not know which states are recursively accessed from other states.
With ETS, we consider every transition as a potential process (i.e. as a poten-
tial destination for a recursive call). Every time we reach a previously visited
state, we assume that we have increased by one the recursive level for the next
transition. In this way, we just need to check how many times we have visited
a state to obtain the level of recursion.

�

SE

�

a,(0,0,...)

s1
�

�
�

���

b,(0,0,...)

S

�
�
�
���

c,(0,0,...)

stop

�

tc1, fail

�

a

s1, fail

�

b

s2, fail

�

a

pass

�

tc2, fail

�

a

s1, fail

�

c

pass

�

Sbis

�

a,(2,1,0,...)

s1
�

�
�

���

b,(1,0,...)

Sbis

�
�
�
���

c,(1,0,...)

stop

Fig. 3. S, tc1, tc2 and Sbis

Example 2 Suppose that we have the recursive specification SE ∈ ETS(L)
appearing in Figure 3. Function N(t, r) appears next to the corresponding label
for every transition. We have represented the function N(t, r) as a sequence
where the first element is the number of times we executed the transition in
the first recursion level, the second element corresponds to the second level of
recursion and so on. Initially, all values in the sequence are zero because we
did not execute any test yet. Suppose also that we have a physical object I that
implements correctly the behaviour described in the specification, i.e. I = SE,
and that we want to execute test cases tc1 and tc2 described in Figure 3.

Sbis represents a snapshot of SE ∈ ETS(L) after the execution of both
test cases. Event a has been tested twice in the first level of recursion, one
for each test case. Besides, this event has also been tested in the second level
of recursion, which corresponds to the last transition of tc1. The rest of the
events have been executed only once in the initial recursion level.

60

Burguillo, Llamas, Fernández, Robles

3.2 Algorithms for Risk-driven Test Case Selection

For test generation and selection, we firstly adopted a classical testing algo-
rithm and modified it to take into account risk and coverage values. The
classical approach selected was Tretmans’ [14], which constructs tree-like de-
terministic test cases recursively selecting at random a subset of all possible
specification transitions from a given state.

Table 4
Generating test cases for S

Given S ∈ ETS(L), we construct a test case tc :=
∑{a; tca | a ∈ AMR}

recursively as follows:

(i) Construct the set CS := {Init(S ′) | S = ε ⇒ S ′}
(ii) Among all possible sets A ⊆ Init(S), select the set AMR hav-

ing a maximum value of
∑

e∈A MRr,n
I (e)

Card(A)
and satisfying one of the

following:
(a) ∀C ∈ CS : AMR

⋂
C �= ∅ and v(tc) = fail, or

(b) ∅ ∈ CS and AMR = Init(S) and v(tc) = pass, or
(c) AMR = ∅ and v(tc) = pass

(iii) Construct recursively tca as a test case for
∑{i; S ′ | S = a ⇒ S ′}

(*) When representing a test case,
∑

represents branching and a; s is short notation
for transitions (i.e. −a → s).

In our case (c.f. Table 4). We modified Tretmans algorithm to select
(considering the conditions expressed in [14]) the set AMR ⊆ Init(s) that
maximizes the mean risk measurement.

Concerning the test generation process and the ETS formalism, before we
generate any test case, we make a copy of SE ∈ ETS(L) and name it Sbkp

E .
During the generation process we will work with Sbkp

E instead of SE. Then,
each time a new set AMR is selected, the values of N(t, r) in copy Sbkp

E are
updated accordingly as they are executed. For example, if due to recursion the
same transition is selected for a second time in the being generated test case,
the corresponding value for N(t, r) will reflect that now we are in the second
level of recursion. These values are updated in Sbkp

E and are considered a priori
values (c.f section 2.4). In other words, a priori values are updated along the
generation of a test case over the copy, and they guide the construction of the
test case in a dynamic fashion.

Once a test case has been completely generated, we recover the original
ETS specification, formerly SE, and execute the test case. After the execution
of the test case, values of N(t, r) in SE are updated according to the execution
sequence obtained a posteriori.

This cycle (i.e. test generation using a priori values, test execution to
obtain a posteriori values, which are used as the initial values for the next
iteration) is repeated until test cases with the desired coverage or cost are

61

Burguillo, Llamas, Fernández, Robles

obtained. This way, we construct dynamically test cases to cover those parts
less adequately tested so far. This approach has been illustrated recently with
a case study [4] and described extensively in [5].

Nevertheless, the algorithm in table 4 has two drawbacks:

(i) Unnecessary cost increments: the algorithm generates test cases with
a tree structure introducing additional branches to cover non determin-
istic behaviours. When executing such test cases, they might examine
certain parts of the implementation already tested, while others might
not be covered enough, originating extra cost and decreasing effective-
ness.

(ii) Partial selection versus global selection: the selection of AMR, along
the test case generation, has not considered any prediction level. This
means that there could be cases where the chosen transitions have not
been previously tested, but which drive to behaviours with a reduced
impact over the global risk.

Table 5
Generating test cases using prediction.

Given S ∈ ETS(L), ip, lmax and sx = s0. A test case tc of S is:

tc := {a; tca | PathTr(ϕopt) = a.σ′}
with ϕopt ∈ Γ : Γ = {ϕ ∈ Path(sx) : |ϕ| ≤ ip} that satisfy:

1. MRI(S, ϕopt) ≥ MRI(S, ϕ),∀ϕ ∈ Γ.

2. |tc| ≤ lmax

3. Using PathTr(tc) = σ.a we assign verdicts with:

a) if L ∈ Ref(S, σ) then v(tc) = pass;

b) if {a} ∈ Ref(S, σ) then v(tc) = inc;

c) if {a} �∈ Ref(S, σ) then v(tc) = fail;

being MRI(S, ϕ) = MRini(S, ϕ)+MRend(S,ϕ)
1+α.Ninc

and divided in ϕ = ϕini.ϕinc

where ϕini is the initial subpath ϕ without inc verdicts and ϕend is the
ending subpath from the first inc verdict. α ∈ [0, 1] is a parameter we
may select and Ninc is the number of verdicts inc that have appeared.
We calculate:

MRini(S, ϕ) =
∑

t≪ϕini
Rr,n

I (t)

MRend(S, ϕ) =
∑

t≪ϕend
Rr,n

I (t)

tca is the test case generated from the state sy such that sx − a → sy.

Therefore, we want to complement the possibility of generating test cases

62

Burguillo, Llamas, Fernández, Robles

with a tree structure, c.g., the ones appearing in table 4, with the generation
of test cases oriented to check certain behaviours poorly tested so far. The
algorithm presented in table 5 can be used in the later test phases when some
specification parts still have a low level of coverage. In such table, function
PathTr(ϕ) returns the trace σ ∈ Tr(P), obtained following path ϕ. Again,
during test case generation we must use a copy (Sbkp

E) to modify its a priori
N(t, r) values. The main properties of this new algorithm are:

(i) We introduce a prediction parameter (ip) and a maximum length (lmax).

(ii) From state s′ ∈ Stat(S) we evaluate the risk of all possible transition
paths ϕ ∈ Path(s′) such that |ϕ| ≤ ip, i.e., paths with less length than
the prediction parameter.

(iii) We choose the path ϕopt that, a priori, measures more risk. Concerning
risk measurement, we take care of the presence of verdicts inc using the
parameter α ∈ [0, 1]. This parameter allows to penalize test cases that
may end without a conclusive verdict, but generating a cost. If α = 0
then the presence of inconclusive verdicts is not considered. If α = 1,
we reduce the a priori risk measurement, computing the risk contained
in the nondeterministic sequence and dividing its value by(1 + Ninc). A
typical initial value may be α = 0.5.

(iv) Once ϕopt has been chosen, we take its first transition t and update the
value of N(t, r) in S to model its execution, advance to the next state
and repeat step 2 until the test case tc reaches the desired length.

Changing the prediction parameter ip we may tune the precision when
generating the test case. With ip = 1 we have the same information than in
the algorithm presented in table 4. With ip = ∞ we will choose the (a priori)
best test case. The price we have to pay when increasing the value of ip is the
computational cost needed to evaluate all possible paths from a given state
and the inherent risk measurement computations. Our experience shows that
ip values around 3 to 5 are quite feasible and specification realistic.

Example 3 Figure 4 shows the specification S. The risk values estimated for
its events are: Ra = 2, Rb = 1, Rc = 5, Rd = 3 y Re = 1. Considering there
is no recursion, we select the next function to measure the risk:

fMR(e, n) = RI(e)
2n

Such function satisfies:

RI(e) =
∞∑

n=1

Rn
I (e) =

∞∑

n=1

fMR(e, n) =
RI(e)

2n

Therefore, in every execution we measure part of the risk for an event, and
the global risk we may measure is equal to the risk of failure for the event.

Using the algorithm that appears in table 4 we may select for the set A one
of the sets {a}, {d} or {a, d}. Their respective values for risk measurement
are:

63

Burguillo, Llamas, Fernández, Robles

�

S

�
�

�
���

a

s1
�

�
�

���

b

stop

�
�
�
���

c

stop

�
�

�
���

d

s2

�

e

stop

�

tc1, fail

�

d

s1, fail

�

e

pass

�

tc2, fail

�

a

s1, fail

�

c

pass

Fig. 4. S, tc1 and tc2

• fMR(a, 1) = 2/2 = 1

• fMR(d, 1) = 3/2 = 1.5

• fMR(a,1)+fMR(d,1)
Card({a,d}) = 1+1.5

2
= 1.25

Hence, using this algorithm, we would choose A = {d}. Following the steps
described in table 4, we obtain the test case tc1, which appears in figure 4.

On the other hand, we will use the predictive algorithm of table 5 with a
prediction parameter ip = 2. In the initial state of Sbkp

E we must calculate all
transition sequences of length ip = 2 and determinate their risk measurement.
There are three cases:

(i) a; b: with the risk measurement fMR(a, 1) + fMR(b, 1) = 2/2 + 1/2 = 1.5

(ii) a; c: with the risk measurement fMR(a, 1) + fMR(c, 1) = 2/2 + 5/2 = 3.5

(iii) d; e: with the risk measurement fMR(d, 1) + fMR(e, 1) = 3/2 + 1/2 = 2

As the bigger measurement of risk is present in the second option, we
take its first transition, modify a priori the values of N(t, r) in Sbkp

E for that
transition, advance to the next state and repeat the procedure.

After the first transition there are only two possibilities b or c, both of length
1. We proceed to determinate their risk measurement, which are: fMR(b, 1) =
1/2 = 0.5 and fMR(c, 1) = 5/2 = 2.5. Therefore, we choose the transition
with b obtaining the test case tc2 in figure 4.

The a priori global risk measurement for tc1 is MRI(S, tc1) = 2 and for
tc2 is MRI(S, tc2) = 3.5. The second test case is clearly better than the first
concerning risk measurement. Thus, if the election of transitions is done with
a certain level of prediction we can take advice of the information that an
enriched transition system offers.

4 Conclusions

We have presented in this paper an approach to testing supported by formal
methods, which also includes non-formal heuristics to introduce the experience
of the testing engineer to evaluate the costs of the testing process.

Our experience showed us that this approach, based on error weighting
and cost values, provides a way to assign values to different test cases, which

64

Burguillo, Llamas, Fernández, Robles

permits to classify them according to different criteria, taking into account
the desired coverage and supported cost. Test generation can be directed by
these heuristics to obtain context-adapted test suites.

This proposal has been experimented recently with a practical case study:
the testing of a protocol for mobile auctions in a distributed, wireless environ-
ment [4]. LOTOS was selected as the supporting formal language. Neverthe-
less, the ideas discussed here are not specific to LOTOS, but applicable to a
wide range of formal techniques, with comparable expressive power.

References

[1] Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A Theory of Communicating
Sequential Processes. Journal of the ACM 31, 1984

[2] Brinksma, E.: A Theory for the Derivation of Tests. Protocol Specification,
Testing and Verification VIII, 63-74. 1988.

[3] Brinksma, E., Tretmans J., Verhaard, L.: A Framework for Test Selection.
Protocol Specification, Testing and Verification, XI. Elsevier Science Publishers
B.V. 233-248, 1991.

[4] Burguillo, J.C., Fernández, M.J., González, F.J., Llamas, M. Heuristic-driven
Test Case Selection from Formal Specifications: A Case Study. 11th Conference
on Formal Methods Europe (FME2002). Copenhagen, Denmark, July 22-24,
2002. (paper accepted, to be published by LNCS). http://floc02.diku.dk/FME/

[5] Burguillo-Rial, J.C.: Contribución a la Fase de Prueba de Sistemas Concurrentes
y Distribuidos mediante Técnicas de Descripción Formal. Ph. D. Dissertation (in
Spanish), Universidad de Vigo, Spain, 2001.

[6] Heerink, L., Tretmans, J.: Formal Methods in Conformance Testing: a
Probabilistic Refinement. In B. Baumgarten, H.J. Burkhardt, and A. Giessler,
editors, Int. Workshop on Testing of Communicating Systems IX, Chapman &
Hall, 1996, 261-276.

[7] Huecas, G.: Contribución a la Formalización de la Fase de Ejecución de Pruebas.
Ph. D. Dissertation (in Spanish), Universidad Politécnica de Madrid, Spain, 1995.

[8] Information Processing Systems - Open Systems Interconnections: LOTOS: A
Formal Description Technique Based on the Temporal Ordering of Observational
Behaviour. IS 8807, ISO, 1989.

[9] Information Processing Systems - Open Systems Interconnections: Conformance
Testing Methodology and Framework. IS 9646, ISO, 1991.

[10] ITU-T: Recommendation Recommendation Z.500. Framework on Formal
Methods in Conformance Testing. ISO ITU-T, Mayo 1997.

[11] Milner, R.: Communication and Concurrency. Prentice-Hall International,
London, 1989

65

Burguillo, Llamas, Fernández, Robles

[12] Myers, G.L.: The Art of Software Testing. John Wiley & Sons Inc., 1979.

[13] Robles, T.: Contribución al Tratamiento Formal de la Fase de Pruebas del
Ciclo Software en Ingenieŕıa de Protocolos. Ph. D. Dissertation (in Spanish),
Universidad Politécnica de Madrid, Spain, 1991.

[14] Tretmans, J.: Conformance Testing with Labelled Transition Systems:
Implementation Relations and Test Generation. Computer Networks and ISDN
Systems, 29: 49-79, 1996.

[15] Velthuys, R.J., Schneider, J.M., Zoerntlein, G.: A Test Derivation Method
Based on Exploiting Structure Information. Protocol Specification, Testing and
Verification XII, 1992.

[16] Zju, J., Vuong, S.T.: Generalized Metric Based Test Selection and Coverage
Measure for Communication protocols. Formal Description Techniques and
Protocol Specification, Testing and Verification. FORTE X/PSTV XVII. IFIP
1997.

[17] Zju, J., Vuong, S.T., Chanson, S.T.: Evaluation of Test Coverage for Embedded
System Testing. 11th International Workshop on Testing of Communicating
Systems. 1998.

66

Margaria, Steffen

Scalable System-level CTI Testing through
Lightweight Coarse-grained Coordination

Tiziana Margaria 1,2

METAFrame Technologies GmbH
Dortmund, Germany

Bernhard Steffen 2

University of Dortmund
Dortmund, Germany

Abstract

We propose a solution to the problem of system-level testing of functionally complex
communication systems based on lightweight coordination. The enabling aspect is
here the adoption of a coarse-grained approach to test design, which is central to
the scalability of the overall testing environment. This induces an understandable
modelling paradigm of system-wide test cases which is adequate for the needs and
requirements of industrial test engineers. The approach is coarse-grained in the
sense that it renounces a detailed model of the system functionality (which would
be unfeasible in the considered industrial setting). The coordination is lightweight
in the sense that it allows a programming-free definition of system-level behaviours
(in this case complex test cases) based on the coarse models of the functionalities.
These features enable test engineers to graphically design complex test cases, which,
in addition, can even be automatically checked for their intended purposes via model
checking.

1 Introduction

System-level testing of communication systems is an intrinsically business-
critical issue for all the stakeholders: technology providers, service providers,
and customer companies that rely on those systems as basis of their business.
It is also a very complex problem, because it involves a variety of technologi-
cally heterogeneous subsystems. Although adequate test tools for the unit test

1 eMail:TMargaria@METAFrame.de
2 eMail:{Tiziana.Margaria, Bernhard.Steffen}@cs.uni-dortmund.de

c©2002 Published by Elsevier Science B. V.

Margaria, Steffen

of each subsystem are available, an integrated approach is still missing: the
system-level tests must be designed and executed almost entirely manually.

We present here a coordination-based integrated test environment which
realizes at Siemens the high-level coordination of complex system-level-tests
for a scenario of commercial, state-of-the-art Computer-Telephony Integrated
systems. Central aspect is here the adoption of a coarse-grained approach to
test design, which is central to the scalability of the overall testing environ-
ment. This enables an understandable modelling of system-wide test cases,
adequate for industrial test engineers, that is based on a lightweight coordina-
tion model. These features enable test engineers to graphically design complex
test cases, which, in addition, can even be automatically checked for their in-
tended purposes via model checking.

In the following, we introduce the concrete application scenario (Sect. 2),
describe our coordination-based scalability approach (Sect. 3 to 5), which con-
cerns test case design, test execution, and validation via coarse-grained model
checking. Finally we address related work (Sect. 6) and conclude (Sect. 7)
with remarks on the benefits and the current perspectives.

2 CTI System-Level Testing in Practice

The application domain concerns Computer Telephony Integrated (CTI) sys-
tems, i.e. composite (sensitive to platform aspects), embedded (due to hard-
ware/software codesign practices), reactive systems that offer high availability
services to a number of clients, and which therefore run on distributed archi-
tectures (e.g. client/server architectures). The supported capabilities cover
at the moment the collaboration between LAN-enabled midrange telephone
switches and a variety of third-party, typically client-server, applications run-
ning on PCs. Integration of WAN capabilities and mobile phones is foreseen
for the next generation of switches, thus it must be conceptually captured
already by today’s environment. In any installed scenario, complex subsys-
tems affect each other in a variety of different ways, so mastering today’s
testing scenarios for telephony systems demands an integrated, open and flex-
ible approach to support the management of the overall test process, from the
specification and design of tests to their execution and to the analysis of test
results.

As a typical example of an integrated CTI platform, Fig. 1 shows a midrange
telephone switch and its environment. The switch is connected to the ISDN
telephone network and communicates directly via a LAN or indirectly via an
application server with CTI applications that run on PCs. Like the phones,
CTI applications are active components: they may stimulate the switch (e.g.
initiate calls), and they react to stimuli sent by the switch (e.g. notify incom-
ing calls). System level test investigates the interactions between such sub-
systems. Typically, each participating subsystem requires an individual test

68

Margaria, Steffen

Hipermon

S0

UPN

V.24

LANTest Coordinator

Call Center Clients

Call Center Server

HUSIM

Fig. 1. Example of an Integrated CTI Platform

tool. In the scenario of Fig. 1 three different test tools are needed: Husim,
an emulator for UPN Devices (i.e. telephones), Hipermon [6], a telephony and
LAN interface tracer, and Rational Robot [14], a GUI capture/replay test tool
for applications located on the application PCs.

Accordingly, in order to test systems composed of several independent
subsystems that intercommunicate, one must be able to coordinate a hetero-
geneous set of test tools in a context of heterogeneous platforms. This task
exceeds the capabilities of today’s commercial test management tools, which
typically cover only the needs of specific (homogeneous) subsystems and of
their immediate periphery.

Traditional formal-methods based test automation approaches fail to enter
practice in this scenario because they require a fine granular formal model of
the involved systems as a basis. In reality, none of the depicted subsystems
has any formal model, but all have a running reference implementation, which
is itself a moving target, yet constitutes de facto the basis of all functional and
regression testing activities. We thus need an approach capable of developing a
formal coordination layer on top of existing black or graybox implementations
which rapidly evolve.

Due to the gray/blackbox availability of the systems under test the coordi-
nation is necessarily coarse grained. Due to the rapid evolution of the systems
(with cycles of one week to three months) the coordination must be extremely
lightweight: there is no hope of having the resources for ”reprogramming” new
test cases once a subsystem varies. Adaptions and changes have to be easy

69

Margaria, Steffen

Exceptions

Test Coordinator
(Setup & Initialization)

Switch

Husim

Hipermon

Rational
Robot

Call Center
Agent

UPN Device

Test Coordinator
(Evaluation & Diagnosis)

Fig. 2. Test Case in the ITE Environment

and programming-free. Taken together, this defines the ‘meta-level’ on which

• test engineers are used to think,

• test cases and test suites can be easily composed and maintained,

• test scenarios can be configured and initialized,

• critical test case consistency requirements (including version compatibility
and frame conditions for executability) are easily formulated, and

• error diagnosis must occur.

2.1 Test Coordination as Superposition

The ITE (Integrated Test Environment) deployed at Siemens contains a ded-
icated Test Coordinator (TC), see Fig. 1 tool which constitutes the system

70

Margaria, Steffen

level test management, organization, and coordination layer of the ITE. The
TC is an application-specific specialization for the testing domain of an exist-
ing general purpose environment for the management of complex workflows,
(METAFrame Technologies’ Agent Building Center ABC [18]). The ABC offers
built-in features for the programming-free coordination and the management
of libraries of functional components. This platform also forms the basis of
the new release of ETI (Electronic Tool Integration platform) [17,2].

The test coordinator is responsible for the definition and enforcement of
complex behaviours which are superposed on the system under test. The
challenge is precisely how to handle this superposition in an independent,
understandable, and manageable way:

• it should be expressive enough to capture the coordination tasks, like steer-
ing test tools, measuring responses, and taking decisions that direct the
control flow within a system-level test case

• it should be non-intrusive, i.e. we cannot afford having to change the code of
the subsystems, and this both for economical reasons and lack of feasibility:
most applications are complete black boxes

• it should be intuitive and controllable without requiring programming skills.
This implies that we need a lightweight, possibly graphical approach to
coordination definition, and that easy and timely validation of coordination
models should be available.

In our solution, we have adopted a coarse-grain approach to modelling sys-
tem behaviour, that accounts for the required simplicity and allows direct
animation of the models as well as validation via model checking.

3 Coarse-Grained System Models

Instantiating the TC to cover a tool or a CTI application consists of design-
ing a set of application-specific test blocks that cover the relevant behaviour
of the application and are executed during the test runs. The test blocks
embody coarse granular functionalities of a subsystem, whose implementa-
tion is not further formally described. They constitute the computational core
of the system, are atomic in the coordination model and are not subject to
modifications.

These test blocks are used by test designers to graphically construct test
cases by drag-and-drop on the TC canvas. The resulting test graphs are
directly executable on a system in the field, and, at the same time, they
constitute the formal models for verification by means of model checking.

Fig. 2 shows a typical test graph, which illustrates the complexity of the
scenarios. Each test block is marked with the name of the subsystem it con-
trols. Some test blocks control directly subsystems-under-test (e.g. when
initializing the switch) while others control the corresponding test tools. It is
easy to see that even this relatively simple test case needs to access almost all

71

Margaria, Steffen

participants of the test scenario of Fig. 1 in a varied way, and that even for
small configurations (only one PC application) the current practice of manual
coordination must require specialized personnel, is tedious, time consuming,
by far not exhaustive, and error prone.

The central aim of the ITE Test Coordinator is to relieve test engineers
from the manual activities of

• programming test blocks, by largely automating the test block generation,
and

• executing the system-level test, by automating the coordinative execution
(initialization, execution, analysis, and reporting).

For the design of appropriate system-level test cases it is necessary to
know what features the system provides, how to operate the system (and
the corresponding test tools) in order to stimulate a feature, and how to
determine if features work. This information is gathered by the test experts,
and after identification of the system’s controllable and observable interfaces it
is transformed into a set of stimuli (inputs) and verification actions (inspection
of outputs, investigation of components’ states). Our coarse-grained approach
allows test engineers to capture these user-level test activities directly in terms
of coordination-level executables test blocks.

3.1 The ITE Component Model

ITE has a very simple component model:

(i) a name characterizing the block,

(ii) a class characterizing the tool, subsystem, or – for test case-specific blocks
– the specific management purpose (e.g. report generation) it relates to,

(iii) a set of formal parameters that enable a more general usage of the block
(e.g. phone ID),

(iv) a set of branches which direct the flow of the test execution in dependence
of the results of the test block execution (e.g. equal or unequal for the
CheckAgentLabel block), and

(v) execution code written in the coordination language, typically to wrap
the actual code that realizes the functionality.

It is easy to see that the name, class, formal parameters, and branches of
this component model provide a very abstract characterization of the com-
ponents, which will be used later to check the consistency of coordination
graphs. The computational portion is encapsulated in the execution code,
which is independent of the coordination level, thus it is written (or, as in this
application, generated) once and then reused across the different scenarios
(e.g. to test several CTI applications).

72

Margaria, Steffen

Fig. 3. Fragment of the Taxonomies as SIB Palettes)

3.2 Formal Test Case Models

Test cases are composed of elementary modules, called SIBs (service indepen-
dent building blocks). The complexity of these SIBs ranges from elementary
statements to relatively large procedures steering the routing or application
machinery. They are classified in our test design environment in terms of a
taxonomy, which reflects the essentials of their profile. A taxonomy is a di-
rected acyclic graph, where sinks represent SIBs, which are atomic entities in
the taxonomy, and where intermediate nodes represent groups, that is sets of
modules satisfying some basic property (expressed as predicates). Fig. 3 shows
a fragment of our taxonomy as it is presented by the ITE test case editor. It
shows two snapshots of SIB palettes: on the left we recognize e.g. groups for
internet actions (web) and for steering the test tool Rational Robot (SQA-
Common), on the right we see groups for telephony activities (GUICommon
and Phone).

73

Margaria, Steffen

Test cases are internally modelled as Kripke structures whose nodes rep-
resent elementary SIBs and whose edges represent branching conditions:

Definition 3.1
A test case model is defined as a triple (S,Act, T rans) where

• S is the set of available SIBs

• Act is the set of possible branching condition

• Trans = {(s, a, s′)} is a set of transitions where s, s′ ∈ S and a ∈ Act.

Through this non-standard abstraction in our model we obtain a separa-
tion of concerns between the control-oriented coordination layer, where the
test engineer is not troubled with implementation details while designing or
evaluating test cases, and the underlying data-oriented communication mech-
anisms enforced between the participating subsystems, which are hidden in
the test block implementation. Our tools support the automatic generation
of test blocks according to several communication mechanisms (CORBA [10],
RMI [19], and other more application-specific ones), as explained in [11].

3.3 Test Block Libraries

A library of test blocks arose this way at Siemens in a very short time, covering
test blocks that represent and implement, e.g. (cf. again Figs. 2 and 3):

Common actions: Initialization of test tools, system components, test cases
and general reporting functions,

Switch-specific actions: Initialization of switches with different extensions,

Call-related actions: Initiation and pick up of calls via a PBX-network or
a local switch,

CTI application-related actions: Miscellaneous actions to operate a CTI
application via its graphical user interface, e.g., log-on/log-off of an agent,
establish a conference party, initiate a call via a GUI, or check labels of
GUI-elements.

3.4 Generating Test Blocks

This simple and well structured component model enables the automatic gen-
eration of coordinable components. In this application domain, only a few
components are generated out of directly programmed code (in some script
language for some proprietary tools or APIs, e.g. for the communication
with the Hipermon). Most components are directly obtained from behaviour
recordings during experiments (e.g. the body of the communication ”answers”
from the Rational Robot). The general structure of most of the test blocks is
in fact similar: a parameterized test script written in some typically propri-
etary language must be transferred to/from the subsystem or its test tool. We
provide tools for the automatic generation of tool-specific adapter code that

74

Margaria, Steffen

makes legal test blocks out of such test scripts. Thus the definition of a new
test block is rather simple: the tester in the field records a GUI test script
which performs some actions, the test engineer defines the abstract compo-
nent as described above, and the script code is automatically wrapped into
a test block that can be directly made available to the test engineers, who
graphically construct new test cases.

4 Organization of Coordination in the ITE

All we need to define coordination in the ITE is already provided by the
test case model together with the executable code of each test block. The
graph structure that we use for the description of test cases also defines a
superposition of coordination sequences over the executable code, and it is thus
independent of the chosen communication paradigms and of the underlying
programming language.

4.1 The Framework

The coordination environment of the ITE bases on the paradigm of applica-
tion development in the underlying Agent Building Center tool (ABC), which
is coordination-oriented. In the ABC, application development consists in fact
of the behaviour-oriented combination of building blocks on a coarse granular
level. Building blocks are identified on a functional basis, understandable to
application experts, and usually encompass a number of ‘classical’ program-
ming units (be they procedures, classes, modules, or functions). They are or-
ganized in application-specific collections. In contrast to (other) component-
based approaches, e.g., for object-oriented program development, the ABC
focusses on the dynamic behaviour: (complex) functionalities are graphically
stuck together to yield flow graph-like structures embodying the application
behaviour in terms of control.

Throughout the behaviour-oriented development process, the ABC offers
access to mechanisms for the verification of libraries of constraints by means
of model checking (Sect. 5). The model checker individually checks hundreds
of typically very small and application- and purpose-specific constraints over
the flow graph structure. This allows concise and comprehensible diagnostic
information in the case of a constraint violation (see Fig. 5), since the feedback
is provided on the coordination graph, i.e. at the application level rather than
on the code.

These characteristics are the key towards distributing labour according to
the various levels of expertise.

Programming Experts: They are responsible for the software infras-
tructure, the runtime-environment for the compiled services, as well as for
programming the single building blocks.

Domain Modelling Experts: They classify the building blocks, typi-

75

Margaria, Steffen

Selection through
test results

Sequence
Interpreter

HLL Interpreter

Delegated
Execution

Coordination
Specification

Integrated
Components

HLL
Instruction

Coordination
Sequence

Coordination
Graph

coordination
sequence

HLL interpreter

HLL return from call

coordination
Instruction

HLL function call

input data output data

Uniform
Coordination

Layer

Tool-Specific
Layers

......

tool

tool
adapter

IDL

Corba

Corba/Java RMI

(A) (B)

Fig. 4. The Coordination Environment in the ITE Scenario

cally according to technical criteria like their version or specific hardware or
software requirements, their origin (where they were developed) and, here,
most importantly, according to their intent for a given application area. The
resulting classification scheme is the basis for the constraint definition in terms
of modal formulas.

Application Experts: They develop concrete applications just by defin-
ing their coordination structure. This happens without programming: they
graphically combine building blocks into coarse-granular flow graphs. These
coordination graphs can be immediately executed by means of an interpreter,
in order to validate the intended behaviour (rapid prototyping). Model check-
ing guarantees the consistency of the constructed graph with respect to the
constraint library.

4.2 The Testing Scenario

In the ITE the test cases play the role that applications play in the ABC and
we are able to use all the benefit offered by the development environment: in
particular, the design environment provides the capability of designing hierar-
chical test cases, and the interpreter provides an efficient mechanism for test
case execution.

4.3 Test Case Execution

The general principle of the test case execution in the ITE is shown in Fig. 4(A).
From the coordination point of view, a test case model is interpreted as a co-
ordination graph, where the actually executed coordination sequence (a path
in the graph) is determined at runtime by results of the execution of the actual
test block. In the concrete test case of Fig. 2, the branching is determined

76

Margaria, Steffen

at the coordination level through the results of the check points (i.e. checkA-
gentLabel, upnCheckDisplay, and checkWindow). The coordination sequence
is executed by means of a sequence interpreter (tracer tool): for each test
block it delegates the execution to the corresponding execution code. This
reflects our policy of separation between coordination and computation: it
embodies the superposition of the coordination on the components’code and
it enables a uniform view on the tool functionalities, abstracting from any
specific technical details like concrete data formats or invocation modalities.

Intertool communication is realized via parameter passing and tool func-
tionality invocation by function calls which, via their arguments, pass abstract
data to the adapters encapsulating the underlying functionalities as sketched
in Fig. 4(B). The functionalities can be accessed via the Corba or Java RMI
mechanism. In the concrete setting of system level tests the input data for
the test tools are test scripts, that can be passed to the subsystems by the
corresponding test tools (delegation stack principle).

The practical impact of our coordination based test environment exceeded
our expectations: ITE has been already successfully used in industrial system-
level testing of advanced CTI applications based on Siemens’ HICOM family
of switches [11,5]. In such scenarios, we have been able to fully automate the
test case execution, and to document an efficiency improvement of factors over
30 during the test execution phase [12].

5 Model Checking as an Aid to Test Case Design

In [13] we presented some pragmatic verification-oriented aspects of our solu-
tion: we showed how the component-based test design was introduced on top
of a library of elementary (but intuitively understandable) test case fragments
(the test blocks), and we showed that the correctness and consistency of the
test design is fully automatically enforced in ITE via model checking. The im-
pact of this approach on the efficiency of test case design and documentation
is dramatic in industrial application scenarios.

The ITE contains an iterative model checker based on the techniques
of [16]: it is optimized for dealing with large numbers of constraints, in order
to allow verification in real time. Concretely, the algorithm verifies whether a
given model satisfies properties expressed in a user friendly, natural language-
like macro language. In the CTI setting:

• the properties express correctness or consistency constraints the target CTI
service or the test case itself are required to respect.

• the models are directly the coordination graphs, where building block names
correspond to atomic propositions, and branching conditions correspond to
action names. Figs 2 and 5 show typical test graphs for illustration.

Classes of constraints are formed according to the application domain, to

77

Margaria, Steffen

Fig. 5. Test Case Checking in the ITE Environment

the subsystems, and to the purposes they serve. This way it depends on the
global test purpose, which constraints are bound to a test case. 3

5.1 The Logic

Local Constraints.

The overall on-line verification during the design of a new test case captures
both local and global constraints. Local constraints specify requirements on
single SIBs, as well as their admissible later parameterization.

Whereas the specification of single SIBs is done simply by means of a
predicate logic over the predicates expressed in the taxonomy, parametrization
conditions are formulated in terms of a library of corresponding predicates.
The verification of local constraints is invoked during the verification of the

3 It was not possible to obtain clearance for publication of confidential material pertaining
to the actual implementation of portions of the system, including complex test cases and
specific constraints.

78

Margaria, Steffen

global constraints.

Global Constraints: The Temporal Aspect.

Global constraints allow users to specify causality, eventuality and other
vital relationships between SIBs, which are necessary in order to guarantee
test case well-formedness, executability and other frame conditions.

A test case property is global if it does not only involve the immediate
neighbourhood of a SIB in the test case model 4 , but also relations between
SIBs which may be arbitrarily distant and separated by arbitrarily heteroge-
neous submodels. The treatment of global properties is required in order to
capture the essence of the expertise of designers about do’s and don’ts of test
case design, e.g. which SIBs are incompatible, or which can or cannot oc-
cur before/after some other SIBs. Such properties are rarely straightforward,
sometimes they are documented as exceptions in thick user manuals, but more
often they are not documented at all, and have been discovered at a hard
price as bugs of previously developed test cases. This kind of domain-specific
knowledge accumulated by experts over the years is particularly worthwhile
to include in the design environment for automatic reuse.

In the ITE, such properties are gathered in a Constraint Library, which can
be easily updated and which is automatically accessed by the model checker
during the verification.

Global constraints are expressed internally in the modal mu-calculus [9].
The following negation-free syntax defines mu-calculus formulas in positive
normal form. They are as expressive as the full modal mu-calculus but allow
a simpler technical development.

Φ ::= A| X | Φ ∧ Φ | Φ ∨ Φ | [a]Φ | 〈a〉Φ | νX. Φ | µX. Φ

In the above, a ∈ Act, and X ∈ Var, where A is given by the SIB taxonomy,
Act by the library of branching conditions, and Var is a set of variables. The
fixpoint operators νX and µX bind the occurrences of X in the formula behind
the dot in the usual sense. Properties are specified by closed formulas, that is
formulas that do not contain any free variable.

Formulas are interpreted with respect to a fixed labeled transition system
〈S,Act,→〉, and an environment e : Var → 2S . Formally, the semantics of the
mu-calculus is given by:

[[X]]e = e(X)

[[Φ1 ∨ Φ2]]e = [[Φ1]]e ∪ [[Φ2]]e

[[Φ1 ∧ Φ2]]e = [[Φ1]]e ∩ [[Φ2]]e

[[[a]Φ]]e = { s | ∀s′. s
a→ s′ ⇒ s′ ∈ [[Φ]]e }

4 I.e., the set of all the predecessors/successors of a SIB along all paths in the model.

79

Margaria, Steffen

[[〈a〉Φ]]e = { s | ∃s′. s
a→ s′ ∧ s′ ∈ [[Φ]]e }

[[νX.Φ]]e =
⋃

{S ′ ⊆ S | S ′ ⊆ [[Φ]]e[X �→ S ′]}
[[µX.Φ]]e =

⋂
{S ′ ⊆ S | S ′ ⊇ [[Φ]]e[X �→ S ′]}

Intuitively, the semantic function maps a formula to the set of states for which
the formula is “true”. Accordingly, a state s satisfies A ∈ A if s is in the
valuation of A, while s satisfies X if s is an element of the set bound to X
in e. The propositional constructs are interpreted in the usual fashion: s
satisfies Φ1 ∨ Φ2 if it satisfies one of the Φi and Φ1 ∧ Φ2 if it satisfies both of
them. The constructs 〈a〉 and [a] are modal operators ; s satisfies 〈a〉Φ if it has
an a-derivative satisfying Φ, while s satisfies [a]Φ if each of its a-derivatives
satisfies Φ. Note that the semantics of νX. Φ (and dually of µX.Φ) is based
on Tarski’s fixpoint theorem [Tars55]: its meaning is defined as the greatest
(dually, least) fixpoint of a continuous function over the powerset of the set of
states.

For the project we provide a simple ’sugared’ version of LTL, which is
translated into the modal mu-calculus for model checking. Here it is impor-
tant to provide a natural language-like feeling for the temporal operators. As
indicated by the example below, the standard logical connectors turned out to
be unproblematic. We omit the formal definition of next, generally, eventu-
ally, and until here, as they are standard. In addition, we have implemented
a pattern-driven formula editor which further simplifies the extension of the
constraint library.

5.2 Expressing Test Case Properties

The library of constraints is also structured according to the main purposes
addressed by the constraints.

Legal Test Cases: Constraints in this class define the characteristics of a
correct test case, independently of any particular system under test and test
purpose. Specifically, testing implies an evaluation of the runs wrt. expected
observations done through verdicts, represented through the predicates passed
and failed. For example, to enable an automated evaluation of results, verdict
points should be disposed in a nonambiguous and noncontradictory way along
each path, which is expressed (in a more user-friendly syntax) as follows:

(passed ∨ failed) ⇒ next(generally ¬(passed ∨ failed))

POTS Test Cases: these constraints define the characteristics of correct
functioning of Plain Old Telephone Services (POTS), which build the basis of
any CTI application behaviour. Specific constraints of this class concern the
different signalling and communication channels of a modern phone with an
end user: signalling via tones, messaging via display, optic signalling via LEDs,
vibration alarm. They must e.g. all convey correct and consistent information.

System Under Test -Specific Test Cases: these constraints define the

80

Margaria, Steffen

correct initialization and functioning of the single units of the system under
test (e.g. single CTI applications, or the switch), of the corresponding test
tools, and of their interplay. Fig. 5 shows the detection of a mismatch for this
class of correctness criteria. Here, a misconfiguration in the test case definition
is discovered: the identifier (the ”title”) of the window expected to appear on
the Call Center Agents PC after a call has been started in the switch should
have been specified before it can be accessed by Rational Robot. In fact,
the Robot (the GUI test tool for the PC Call Center Application) needs this
information in order to check that this window appropriately appears on the
screen. As we see in this example, also the diagnostic information in case of
property violation is provided in a user-friendly way: the violating path is the
one that leads to the highlighted (red, instead of gold) Rational Robot test
block, and a verbal formulation of the failed property allows the test designer
to spot the problem without need to master temporal logics.

6 Related Work

Our work differs both from the usual approach to test definition and generation
and from the usual attitude in the coordination community.

Most research on test automation for telecommunication systems concen-
trates on the generation of test cases and test suites on the basis of a formal
model of the system: academic tools, like TORX [21], TGV [3,7], Autolink
[15], and commercial ones like Telelogic Tau [20] presuppose the existence of
fine-granular system models in terms of either automata or SDL descriptions,
and aim at supporting the generation of corresponding test cases and test
suites. This approach was previously attempted in the scenario we are consid-
ering here, but failed to enter practice because it did not fit the current test
design practice, in particular because there did not exist any fine granular
formal model of the involved systems.

The requirements discussed in this paper exceed the capabilities of todays
commercial testing tools. To our knowledge there exist neither commercial
nor academic tools providing comprehensive support for the whole system-
level test process. We combine commercial test tools (in this case Rational
Robot [14], Hipermon [6]) that deal with the subsystems of the considered
scenario in order to capture the global test process.

Concerning coordination approaches, the closest to ours is in our opinion
that of [1], which proposes the use of coordination contracts to promote the
separation of the coordination aspects that regulate the way objects interact
in a system, from the way objects behave internally. Like for us, their main
concern is supporting evolutionary aspects of the whole system. In their work,
contracts fulfill a role similar to architectural connectors: they make these co-
ordination features available as first-class citizens, so that it is possible to
treat them distinctly from the functionality of the components. Contracts

81

Margaria, Steffen

are based on superposition mechanisms [8] for supporting forms of dynamic
reconfiguration of systems. These mechanisms enable contracts to be added
or replaced without the need to change the objects to which they apply. [4]
describes CDE, an environment for developing coordination contracts in Java.
The CDE approach is still programming-oriented: unlike our coordination
graphs, contracts must be programmed, they do not (yet) support macros
or hierarchy, and no automatic verification for contracts is available. In our
application domain, scalability of the approach is a major demand! It must
be applicable to a regression testing scenario of hundreds of complex applica-
tions with very high regression frequencies. Accordingly, it is important that
contracts (for us, test cases/coordination graphs are the global contracts) be

• definable in a programming-free fashion,

• themselves largely reusable, since we coordinate large behaviours,

• hierarchical, and

• subject to the validation of ”reusability” of contracts via model checking in
different contexts.

Indeed, hierarchy and formal verification of test cases are appreciated and
heavily used features of the ITE environment.

7 Conclusion

Coordination graphs provide a useful abstraction mechanism to be used in
conceptual modelling because they direct developers to the identification and
promotion of interactions as first-class citizens, a pre-condition for taming
the complexity of system construction and evolution. Their incarnation for
system-level test case application has proven the feasibility of the approach
and, more importantly, its adequacy for adoption in an industrial environment.
Coarse grained modelling was natural for the test engineers, who are used to
a functionality-oriented macro-model of the systems, of the test tools, and of
the applications they test. It was also gracefully fitting with their pre-existing
practice. Lightweight coordination solved the problem of keeping track of
continuously evolving subsystems. The graphical configuration of test cases
was perceived as intuitive, easy to manage, and for the first time providing an
illustrative means to depict system-wide behaviours. The additional benefit of
verification of the test cases wrt. abstract requirements or conventions was also
perceived as useful and economically productive: it greatly enhanced reusal of
test cases in similar contexts, and it allowed fast debugging of new test cases
to take care of changed contexts or settings.

Our partners are confident that the scalability of the approach to the
next generation of switches (which will involve widely networked and mobile
applications) is within reach.

82

Margaria, Steffen

Acknowledgements

This is joint work with G. Brune, H.-D. Ide, W. Goerigk, B. Hammelmann, and
A. Erochok (SIEMENS ICN Witten), A. Hagerer, O. Niese and M. Nagelmann
(METAFrame Technologies GmbH Dortmund).

References

[1] L. Andrade, J. Fiadeiro, J. Gouveia, G. Koutsoukos, A. Lopes, M. Wermelinger:
Coordination Technologies For Component-Based Systems, to appear at
Integrated Design and Process Technology, IDPT-2002, Pasadena (CA), June,
2002, Society for Design and Process Science.

[2] V. Braun, T. Margaria, B. Steffen: The Electronic Tool Integration Platform
appears in the Special Theme Issue on ”Internet Based Technology Transfer
Services” of the Journal Asia Pacific Tech Monitor.

[3] J.-C. Fernandez, C. Jard, T. Jéron, C. Viho: An Experiment in Automatic
Generation of Test Suites for Protocols with Verification Technology, Science
of Computer Programming, 29, 1997.

[4] J. Gouveia, G. Koutsoukos, L. Andrade, J. Fiadeiro: Tool Support for
Coordination Based Evolution, Proc. TOOLS 38, W.Pree (ed.), IEEE Computer
Society Press 2001, pp. 184-196.

[5] A. Hagerer, T. Margaria, O. Niese, B. Steffen, G. Brune, H.-D. Ide: An
Efficient Regression Testing of CTI Systems: Testing a complex Call-Center
Solution, Accepted for publication in Annual Review of Communic., Vol. 55,
Int. Engineering Consortium, Chicago, 2001.

[6] Herakom GmbH, Germany, http://www.herakom.de.

[7] C. Jard, T. Jeron: TGV: Theory, Principles and Algorithms,Proc.
Int.Symposium on Integrated Design and Process Technology 2002, Pasadena,
June 2002, (to appear).

[8] S. Katz: A Superimposition Control Construct for Distributed Systems, ACM
TOPLAS 15(2), 1993, pp. 337-356.

[9] D. Kozen: Results on the Propositional µ-Calculus, Theoretical Computer
Science, Vol. 27, 1983, pp. 333-354.

[10] Object Management Group: The Common Object Request Broker: Architecture
and Specification, Revision 2.3, Object Management Group, 1999.

[11] O. Niese, T. Margaria, A. Hagerer, M. Nagelmann, B. Steffen, G. Brune, H.-D.
Ide: An Automated Testing Environment for CTI Systems Using Concepts for
Specification and Verification of Workflows, In Annual Review of Communic.,
Vol. 54, Int. Engineering Consortium, Chicago, 2000.

83

Margaria, Steffen

[12] O. Niese, T. Margaria, A. Hagerer, B. Steffen, G. Brune, W. Goerigk, H.-D. Ide:
An Automated Regression Testing of CTI Systems, In Proc. IEEE European
Test Workshop 2001, pp. 51-57, Stockholm (S), 2001.

[13] O. Niese, B. Steffen, T. Margaria, A. Hagerer, G. Brune, H.-D. Ide: Library-
based Design and Consistency Checking of System-level Industrial Test Cases,
FASE 2001, Int. Conf. on Fundamental Aspects of Software Engineering,
Genova, LNCS 2029, Springer Verlag, 2001, pp. 233-248.

[14] Rational, Inc.: The Rational Suite description,
http://www.rational.com/products.

[15] M. Schmitt, B. Koch, J. Grabowski, D. Hogrefe: Autolink - A Tool for
Automatic and Semi-automatic Test Generation from SDL-Specifications,
Technical Report A-98-05, Medical Univ. of Lübeck, Germany, 1998.

[16] B. Steffen, A. Claßen, M. Klein, J. Knoop, T. Margaria: The Fixpoint Analysis
Machine, (invited paper) CONCUR’95, Pittsburgh (USA), August 1995, LNCS
962, Springer Verlag.

[17] B. Steffen, T. Margaria, V. Braun: The Electronic Tool Integration platform:
concepts and design, Int. J. STTT (1997)1, Springer Verlag, 1997, pp. 9-30.

[18] B. Steffen, T. Margaria: METAFrame in Practice: Intelligent Network Service
Design, In Correct System Design – Issues, Methods and Perspectives, LNCS
1710, Springer Verlag, 1999, pp. 390-415.

[19] Sun: Java Remote Method Invocation.
http://java.sun.com/products/jdk/rmi.

[Tars55] A. Tarski: A Lattice-Theoretical Fixpoint Theorem and its Applications,
Pacific Journal of Mathematics, V. 5, 1955.

[20] Telelogic: Telelogic Tau, http://www.telelogic.com.

[21] J. Tretmans, A. Belinfante: Automatic testing with formal methods, In
EuroSTAR’99: 7th European Int. Conference on Software Testing, Analysis &
Review - EuroStar Conferences, Galway, Ireland, November 8-12, 1999.

84

Andrew D. Gordon (Microsoft Research, Cambridge, UK)

Authenticity Types for Cryptographic Protocols

based on joint work with Alan Jeffrey, DePaul University (Chicago, IL, USA)

Cryptographic protocols are essential for the security of many critical networking
applications, such as authenticating various financial transactions. Moreover, many
new consumer-to-business and business-to-business protocols are being proposed and
need cryptographic protection. It is famously hard to specify and verify such
protocols, even if we assume that the underlying cryptographic algorithms cannot be
cryptanalysed. My invited talk describes a new approach to specifying and verifying
authenticity properties of security protocols, based on a typed process algebra. The
theory has been developed in a series of papers with Alan Jeffrey. Our approach
requires little human effort per protocol, puts no bound on the size of the opponent
attacking the protocol, and requires no state space enumeration. Moreover, the types
for protocol data provide Some intuitive explanation of how the protocol works. My
talk explains the basic ideas by example, states our main results, and outlines our plans
for applications of this technology.

References

A.D. Gordon and A. Jeffrey. Types and effects for asymmetric cryptographic
protocols. In 15th IEEE Computer Security Foundations Workshop (CSFW 2002),
Cape Breton, June 24-26, 2002. IEEE Computer Society.

A.D. Gordon and A. Jeffrey. Authenticity by typing for security protocols. In 14th
IEEE Computer Security Foundations Workshop (CSFW 2001), pages 145-159, Cape
Breton, June 11-13, 2001. IEEE Computer Society. A journal version is to appear in
the Journal of Computer Security.

A.D. Gordon and A. Jeffrey. Typing correspondence assertions for communication

 85

 86

Lopez, Simonot, Viguie

A methodological process for the design of a
large system: two industrial case-studies.

Nestor Lopez, Marianne Simonot, Véronique Viguié Donzeau-Gouge

Cedric Research Laboratory, Conservatoire National des Arts et Métiers,
292 Rue Saint-Martin, 75141 Paris Cedex, France.

email: (donzeau, lopezne, simonot)@cnam.fr

Abstract

This paper presents two examples taken from industrial case-studies that have been
specified using an event system approach. Component specifications, taking the
form of pre-post formula, have been derived. Constraints which ensure the correct-
ness of the whole process are given.

1 Introduction

Our purpose is to present a methodological process which can be used for an
entire system development. We define a system according to the properties
it must satisfy and express them in a formal way. This process leads us to
build two sorts of mathematical models: event models and operational models.
They define the formal specification of the entire system. These models are
proved to be consistent and the correctness of the whole process is ensured, i.e.
the correctness of the implementation of each component and the correctness
of the implementation of the entire system.
The applications we have in mind heavily interact with their environment.
They may use existing hardware and software components.
Addressed issues: A first issue is the big quantity of information required
by this kind of specification, which makes necessary to introduce a certain
hierarchy into the expressed ideas. This is done in two ways: by defining the
more abstract aspects and gradually focusing upon details; and by grouping
properties into specific categories (properties which describe the interactions
between components and with the environment, and properties which are local
to one component, like functional properties). We use refinement techniques
[Back 88], [Morg 90], [Abr 96-1], [But 96] to support the abstraction i.e. to
introduce details and to express some design decisions.
A second issue is how to specify interactions of a system with its environ-
ment. The trend is to build a closed model [Abr 96-2] which includes the

c©2002 Published by Elsevier Science B. V.

Lopez, Simonot, Viguie

whole environment. However, this model can be extremely complex. In our
approach, we develop a closed model which specifies only the interactions
of the system with the environment. Furthermore, refining a closed system
might lead to a program failing to implement the specification we have in
mind [Lop,Sim,Don 00].
Choices: The formal specification language must allow the expression of
nondeterministic specifications and has to be supported by efficient proof as-
sistants, So we neither combine different logic nor introduce new ones. We
largely rely on existing proven methods backed by tools. We adopt the set
theory as well as the refinement techniques as they are encapsulated in the
actual tools [Atelier B], [B Toolkit].
Process: We start from an informal specification written in a natural lan-
guage which describes all the properties the system must satisfy. Domain
experts participate in the elaboration and validation of this document. When
system details are introduced, some implementation choices can be made: for
example re-using existing devices with well-defined interfaces.
Then we build, step by step, an event model which only describes the inter-
actions of the system with its environment and between the different com-
ponents. It expresses the hypothesis that we make on the environment. We
only keep from the initial properties those that express interactions. This pro-
cess is controlled by event refinement techniques as defined in [Lam,Sha 90],
[But 96], [Abr 96-2], [Back,Kur 88].
After this, the event model is transformed into a shared module which is
used in the specification of components. This module provides the external
and internal communications mechanisms of the system. It is called interface
module. Roughly speaking, by module we mean a set of program specifications
which can be refined to sequential program implementations.

Finally, the specification of each component is written separately. It in-
corporates the properties of the informal specification related to only to this
component, and which therefore, have not yet been taken into account. Com-
ponent specifications are used as the starting point for the usual refinement
process for sequential programs [Back 88], [Abr 96-1].

The correctness of the whole process is presented in [Lop 02]. In this ar-
ticle, the conditions that ensure this correctness will only lightly be touched
upon.
In the rest of this paper, we treat two examples extracted from industrial
case-studies which are specified and partially proven using [Atelier B]. They
are presented in the syntax of this tool and some comments are added to help
the reader. However, the B method does not include two important notions
we use: shared modules and auxiliary variables. These notions are introduced
and formally defined in [Lop 02]. They tend to extend the utilization of the
B method to concurrent systems and distributed systems. The first example
illustrates the way we use to specify a large system. The second example
illustrates the way we use to derive component specifications. The event spec-

88

Lopez, Simonot, Viguie

ification of this example is detailed in [Lop,Sim,Don 00].

2 An event based specification: The passenger exchange
function of the Météor Metro Line

Meteor is a new and totally automated metro line built in Paris. The line
is formed by trains and arrival/departure platforms. Trains and platforms
have doors. The passenger exchange function 1 must ensure the passengers’
safety, which is built upon four independent principles that can be expressed
as follows:
P0 An exchange cannot generate an unsafe situation.
P1 To guarantee the passengers’ safety, it is necessary to ensure the immobility
of the train during the exchange.
P2 Passengers are safe if the trains and the platforms are closed universes.
P3 If a dangerous situation occurs, the passengers should have the possibility
of leaving the train at any time to get a safe environment.
Several kinds of passenger exchanges can be identified: the usual ones, and
emergency evacuations which happen when a dangerous situation is detected.
Such an evacuation has to be launched as soon as a danger occurs 2 .

2.1 Recalls

Events. An event specification takes the form ∃a. G(x, a) ∧ A(x, a, x′). The
guard constraints the occurrence of the event and the action specifies its ef-
fect. The variable a allows to express the external non-determinism, i.e.,
external values provided by the environment. The guard G(x, a) defines the
states in which the event can be observed, the action A(x, a, x′) relates sys-
tem states before and after the observation. The concrete syntax of an event
(in [Abr 96-2]) is any a where G(x, a) then Sx,a where Sx,a is the generalized
substitution which is a translation of A(x, a, x′). For instance x′ = x ∪ a is
translated into x := x ∪ a.
Event Refinement. Let E1(x, x′) be of the form ∃a. G1(x, a) ∧ A1(x, a, x′)
and E2(w,w′) be of the form ∃a. G2(w, a) ∧ A2(w, a, w′), the specifications of
two events. They are defined on two different state spaces. Let J(x,w) be a
total relation defined between these two spaces, the formula E1 �JE2 =def

∀x,w,w′. ∃a. (J(x,w)∧G2(w, a)∧A2(w, a, w′)) ⇒ ∃a, x′. G1(x, a)∧A1(x, a, x′)∧
J(x′, w′) expresses the fact that all state changes observed with E2 are also
observed with E1.
Event System. An event system Ss = (x, IS, C,Ei) is formed by a shared

1 This case-study has been proposed by the RATP and Matra Transport International
within the framework of an agreement between the CNAM computer research center (lab.
CEDRIC), RATP, MTI(SIEMENS), and STERIA under the contract DJ.0246/98.
2 This presentation is a simplified version of this problem -a more detailed description is
provided in [Lop 02], [Lop 99].

89

Lopez, Simonot, Viguie

variable x that represents the system state, an invariant IS that expresses
static properties of the system, the specification C that initializes the system
and the set of events Ei for i ∈ 1..n that defines the dynamics. Such systems
are transition systems, whose initial states are defined by the initialization,
and whose transitions are defined by the events.
System Consistency. An event system is said to be consistent if the invari-
ant is established by the initialization and preserved by each event.
System Refinement. Let S1 and S2 be two event systems, let J(x,w) be a
total relation between their variables, S1 is refined by S2 (S1 �J S2) if each
event of S2 is a refinement of the corresponding event of S1, and if the ini-
tialization of S2 is a refinement of the initialization of S1. The corresponding
proof obligations are generated by the actual tools.
Adding new events. According to [Abr 96-2], [Lop 02], it is possible during
a refinement:

• to add new events. For this, we have just to assume that the new event is
present in the abstract system with true ∧ skip as its specification. skip
means that the new event does not modify any variable of the abstract
system. This means that when a new variable is introduced, the refinement
must include all the events which modify this variable. This constrains the
way events are introduced.

• to split an event. This decomposition allows us to observe an event with
greater precision. In order to do this, it suffices to assume that in the
abstract system, the abstract event E is duplicated as many times as needed
and that each event in the decomposition must be a refinement of E.

2.2 First model

This model introduces the main notions of the system: trains tt, platforms qq,
and their possible states (variables): unsafe (td, qd) or safe (tt− td, qq − qd).
At this level, only the property P0 can be expressed. We can observe five
events:

- UnsafeTrain, SafeTrain which modify the variable td.

- UnsafePlatf, SafePlatf which modify the variable qd.

- Transfer which has no effect upon the environment and can be activated
at any time.

Note that Transfer can occur at any time and not only in a safe situation.
Note also that the property P0 is expressed by the fact that the action of
Transfer does not modify the system state.

90

Lopez, Simonot, Viguie

SYSTEM Meteor1.1

SETS tt; qq /* Trains, platforms of the line */

VARIABLES td, qd /* Unsafe trains and platforms */

INVARIANT td ⊆ tt ∧ qd ⊆ qq

INITIALISATION td, qd := ∅, ∅ /* The line is safe */

EVENTS

Transfer =̂

SELECT TRUE /* An exchange is always observable. */

THEN SKIP /* The safety is not modified (P0). */

END;

UnsafeTrain =̂ /* A safe train becomes unsafe */ UnsafePlatf =̂ /* q1 becomes unsafe */

ANY t1 WHERE t1 ∈ tt ∧ t1 /∈ td ANY q1 WHERE q1 ∈ qq ∧ q1 /∈ qd

THEN td := td ∪ {t1} THEN qd := qd ∪ {q1}
END; END;

SafeTrain =̂ /* An unsafe train becomes safe */ SafePlatf =̂ /* q1 becomes safe */

ANY t1 WHERE t1 ∈ td ANY q1 WHERE q1 ∈ qd

THEN td := td − {t1} THEN qd := qd − {q1}
END; END

The proofs of consistency of this model are generated and discharged by
the Atelier B. We can prove additional properties using this model. For ex-
ample, deadlock freeness is implied by the fact that under the invariant, the
disjunction of the guards is always true. We can also prove properties of event
traces the system should allow: for instance, Transfer can be observed at any
time.

2.3 Second model

This model introduces the notion of locked train needed to express property
P1. A locked train is totally stopped and to start moving, some actions need
to be executed before.

The variable ti models the set of locked trains. Hence, two new events
LockedTrain and UnlockedTrain are introduced.

At this level, we want to observe separately two kinds of exchanges :
normal exchanges and other cases. To differentiate these two cases, we dis-
tinguish those trains which are doing a passenger exchange in normal condi-
tions: variable ttv. This partition is done by decomposing the event Transfer
of the previous model into two events EndPassExch (normal exchange) and
Transfer1 (other exchanges). An event, StartPassExch, must be added to
modify ttv. It allows to observe the beginning of a normal passenger exchange.

A normal exchange is done when a train is in ttr. Hence, ttv only in-
cludes trains which satisfy this property. To express this, we introduce a
partial function t q from trains to platforms, the variable qtv denotes the
set of trains which are doing a passenger exchange in the normal conditions.

91

Lopez, Simonot, Viguie

StartPassExch is activated if the train is stopped in front of a platform, and
hence, t q appears in its guard. Other events that modify this variable are
introduced: DepartureFromPlatf and ArrivalToPlatf.

Property P1 is an invariant of the system. The first four events of the
system Meteor1.1 are included here in addition to the events that we have
just introduced. The first four events are still not synchronized. The new
events are synchronized as follows:

LockedTrain → Transfer1 → UnlockedTrain

ArrivalToPlatf → LockedTrain → StartPassExch → EndPassExch →
UnlockedTrain → DepartureFromPlatf.

LockedTrain → UnlockedTrain

The guarantee of this synchronization is obtained by proof obligations in-
volving only guards.

SYSTEM Meteor1.2

VARIABLES

td, qd, /* Unsafe trains and platforms */

t q, /* Trains in front of platforms */

ttr, /* Trains doing an exchange */

ttv, qtv, /* Trains and platforms doing a passenger exchange */

ti /* Locked trains */

INVARIANT

td ⊆ tt ∧ qd ⊆ qq ∧
t q ∈ tt � qq ∧ ttv ⊆ ttr ⊆ ti ⊆ tt ∧ /* includes (P1) */

ttv ∈ dom(t q) ∧ qtv = t q[ttv] ∧
INITIALISATION t q, ttr, ttv, td, ti, qtv, qd := ∅, ∅, ∅, ∅, ∅, ∅, ∅
EVENTS

UnsafeTrain =̂ . . . UnsafePlatf =̂ . . .

SafeTrain =̂ . . . SafePlatf =̂ . . .

StartPassExch =̂ /* t1 starts a Transfer */ EndPassExch =̂ /* t1 finishes a Transfer */

ANY t1 WHERE ANY t1 WHERE

t1 ∈ ti ∧ t1 /∈ ttr∧ t1 ∈ ttv

t1 ∈ dom(t q) ∧ t q(t1) /∈ qtv /* t1 is in Transfer */

THEN ttv, qtv, ttr := ttv ∪ {t1}, THEN ttv, qtv, ttr := ttv − {t1},
qtv ∪ t q[t1], ttr ∪ {t1} qtv − t q[t1], ttr − {t1}

END; END;

Transfer1 =̂

ANY t1 WHERE t1 ∈ ti ∧ t1 /∈ ttv /* t1 is not in Transfer */

THEN SKIP /* end of the Transfer */

END;

92

Lopez, Simonot, Viguie

LockedTrain =̂ UnlockedTrain =̂

/* An unlocked train becomes locked */ /* A locked train becomes unlocked */

ANY t1 WHERE t1 ∈ tt ∧ t1 /∈ ti ANY t1 WHERE t1 ∈ ti ∧ t1 /∈ ttr

THEN ti := ti ∪ {t1} THEN ti := ti − {t1}
END; END;

ArrivalToPlatf =̂ DepartureFromPlatf =̂

/* A train arrives to a (free) platform */ /* A train is leaving a platform */

ANY t1, q1 WHERE t1 ∈ tt∧ ANY t1 WHERE

q1 ∈ qq ∧ t1 /∈ dom(t q)∧ t1 ∈ dom(t q)∧
q1 /∈ ran(t q) ∧ t1 /∈ ti t1 /∈ ti

THEN t q := t q ∪ {t1 �→ q1} THEN t q := {t1} � t q

END; END;

2.4 Third model

In this model, we observe the normal openings of the doors. It introduces the
safety property P2 which can be rewritten as follows: (P2.1) a train which
is not closed is in a passenger exchange state, (P2.2) a platform which is
not closed is a platform on which a passenger exchange is currently taking
place or which is in a safe state. We introduce open trains to and open plat-
forms qo as well as four events OpenedTrain, ClosedTrain, OpenedPlatf,
ClosedPlatf, which modify these variables. These events detail the tran-
sition StartPassExch → EndPassExch. Their guards define the following
synchronization:

OpenedTrain ClosedTrain

StartPassExch → → → EndPassExch

OpenedPlatf ClosedPlatf

The doors of a platform are opened only if the platform is safe. Here, we
introduce the variable qs and, therefore, two events SafeZone and UnsafeZone

which allow to modify this variable. These events detail the opening process
of a platform. SafeZone must occur before OpenPlatf and UnsafeZone before
ClosedPlatf.

SYSTEM Meteor1.3

VARIABLES

td, qd, t q, ttr, ttv, qtv, ti,

to, qo, /* Opened trains and platforms */

qs, /* safe platform zones */

93

Lopez, Simonot, Viguie

INVARIANT

td ⊆ tt ∧ qd ⊆ qq ∧ t q ∈ tt � qq ∧
ttv ⊆ ttr ⊆ ti ⊆ tt ∧ /* includes (P1) */ ttv ∈ dom(t q) ∧ qtv = t q[ttv] ∧
to ⊆ ttr ⊆ tt ∧ /* includes (P2.1) */ qo ⊆ qq ∧
qs ⊆ qq ∧ qo ⊆ qtv ∪ qs /* (P 2.2) */

INITIALISATION t q, to, ttr, ttv, td, ti, qo, qtv, qd, qs := ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅
EVENTS

UnsafeTrain =̂ . . . UnsafePlatf =̂ . . .

SafeTrain =̂ . . . SafePlatf =̂ . . .

StartPassExch =̂ . . . EndPassExch =̂

ANY t1 WHERE t1 ∈ ttv ∧ /* t1 is in a transfer: */

t1 /∈ to ∧ t q(t1) /∈ qo

Transfer1 =̂ . . . THEN ttv, qtv, ttr := ttv − {t1},
qtv − t q[t1], ttr − {t1} /* End of the transfer */

END;

LockedTrain =̂ . . . UnlockedTrain =̂ . . .

ArrivalToPlatf =̂ . . . DepartureFromPlatf =̂ . . .

OpenedTrain =̂ /* t1 becomes opened */ ClosedTrain =̂ /* t1 becomes closed */

ANY t1 WHERE t1 ∈ ttr ∧ t1 /∈ to ANY t1 WHERE t1 ∈ to

THEN to := to ∪ {t1} THEN to := to − {t1}
END; END;

OpenedPlatf =̂ /* q1 becomes opened */ ClosedPlatf =̂ /* q1 becomes closed */

ANY q1 WHERE q1 ∈ qtv ∪ qs ∧ q1 /∈ qo ANY q1 WHERE q1 ∈ qo

THEN qo := qo ∪ {q1} THEN qo := qo − {q1}
END; END;

SafeZone =̂ /* q1 zone becomes safe */ UnsafeZone =̂ /* q1 zone becomes unsafe */

ANY q1 WHERE q1 ∈ qq ∧ q1 /∈ qs ANY q1 WHERE q1 ∈ qs

THEN qs := qs ∪ {q1} THEN qs := qs − {q1}
END; END;

2.5 Fourth model

In this model, we introduce the property P3 and we observe an emergency
evacuation. In this case, passengers have to leave the train, so the train state
must allow the opening of the doors, and an access to a safe circulation zone
must also be provided. All of the trains which are in an emergency evacuation
are modeled by the variable teu. We have two events which allow us to observe
the beginning and the end of an emergency evacuation: StartEva and EndEva.

New notions: the evacuation zones ze, and among them, the subset of evac-
uation zones which are safe zs. We must be able to locate a train with respect
to the evacuation zones; this is the role of the function t z. The events which
modify t z (ArrivingZoneEva and LeavingZoneEva) and zs, (SafeZoneEva
and UnsafeZoneEva) are introduced. The localization of platforms into the
evacuation zones is defined by the relation q z.

As previously, the event Transfer1 is decomposed into two events : EndEva

94

Lopez, Simonot, Viguie

and Transfer2. EndEva models the end of an emergency evacuation, the event
StartEva puts the train in a state of evacuation (teu is modified).

And just like the previous systems, guards ensure the expected synchro-
nization.

SYSTEM Meteor1.4

SETS ze /* Evacuation zones */

CONSTANTS q z /* Localization of platforms into zones */

PROPERTIES q z ∈ qq ↔ ze

VARIABLES

td, qd, t q, ttr, ttv, qtv ti,t0, q0, qs,

t z /* Localization of trains */ teu, zs /* Urgent evacuations and evacuation zones */

INVARIANT

td ⊆ tt ∧ qd ⊆ qq ∧ t q ∈ tt � qq ∧ ttv ⊆ ttr ⊆ ti ⊆ tt ∧ /* includes (P 1) */

ttv ∈ dom(t q) ∧ qtv = t q[ttv] ∧ to ⊆ ttr ⊆ tt ∧ /* includes (P 2.1) */

qo ⊆ qq ∧ qs ⊆ qq ∧
qo ⊆ qtv ∪ qs /* (P2.2) */ t z ∈ tt ↔ ze ∧ dom(t z) = tt ∧
t q−1; t z ⊆ q z teu ⊆ ttr ∧
ttv ∩ teu = ∅ ∧ teu ⊆ td ∧
zs ⊆ ze ∧ teu ⊆ t z−1[zs] /* (P 3.1) */

ran(q z) = ze /* (P 3.2) */

INITIALISATION t q, t z, to, ttr, ttv, teu, td, ti, qo, qtv, qd, qs, zs :

t q = ∅ ∧ t z ∈ tt ↔ ze ∧ dom(t z) = tt ∧ to = ∅ ∧ ttr = ∅ ∧ ttv = ∅ ∧ teu = ∅ ∧ td = ∅ ∧
ti = ∅ ∧ qo = ∅ ∧ qtv = ∅ ∧ qd = ∅ ∧ qs = ∅ ∧ zs = ∅

EVENTS

UnsafeTrain =̂ . . . UnsafePlatf =̂ . . . SafeTrain =̂ . . . SafePlatf =̂ . . .

StartPassExch =̂ . . . EndPassExch =̂ . . . LockedTrain =̂ . . . UnlockedTrain =̂ . . .

ArrivalToPlatf =̂ . . . DepartureFromPlatf =̂ . . . OpenedTrain =̂ . . . ClosedTrain =̂ . . .

OpenedPlatf =̂ . . . ClosedPlatf =̂ . . . SafeZone =̂ . . . UnsafeZone =̂ . . .

StartEva =̂ /* t1 starts an evacuation */ EndEva =̂ /* an evacuation is finished */

ANY t1 WHERE t1 ∈ ti ∧ t1 ∈ td ∧ ANY t1 WHERE t1 ∈ teu ∧
t1 /∈ ttr ∧ t z[t1] ⊆ zs t1 /∈ to ∧ t1 /∈ td

THEN teu, ttr := teu ∪ {t1}, ttr ∪ {t1} THEN teu, ttr := teu − {t1}, ttr − {t1}
END; END;

Transfer2 =̂

ANY t1 WHERE t1 /∈ ttv ∪ teu ∧ t1 ∈ ti /* t1 is not in transfer */

THEN SKIP /* The transfer is finished */ END;

ArrivingZoneEva =̂ /* a train arrives in a zone */ LeavingZoneEva =̂ /* t1 leaves z1 */

ANY t1, z1 WHERE t1 ∈ tt ∧ ANY t1, z1 WHERE t1 ∈ tt ∧
t1 /∈ ti ∧ z1 /∈ t z[t1] ∧ z1 ∈ ze ∧ z1 /∈ zs t1 /∈ ti ∧ z1 ∈ t z[t1] ∧ z1 /∈ zs

THEN t z := t z ∪ {t1 �→ z1} END; THEN t z := t z − {t1 �→ z1} END;

SafeZoneEva =̂ /* z1 becomes safe */ UnsafeZoneEva =̂ /* z1 becomes unsafe */

ANY z1 WHERE z1 ∈ ze ∧ z1 /∈ zs ANY z1 WHERE z1 ∈ zs ∧ z1 /∈ t z[td]

THEN zs := zs ∪ {z1} END; THEN zs := zs − {z1} END;

95

Lopez, Simonot, Viguie

The other kind of passenger exchanges are introduced using a similar pro-
cess.

2.6 Conclusion

What we obtain at this point is a formal description of the required behavior
of the system. It takes the form of an event model.

This model describes an automaton representing the external behavior.
Some safety properties specify the static of the system, the others specify the
dynamic. Here, P1, P2 and P3 are static, P0 is dynamic. Static properties are
embedded in the invariant. The final specification has a lot of events which
have been gradually introduced, thanks to the event refinement mechanism.
This top down analysis leads us to introduce system details, though the order
of insertion between properties which have a similar abstraction level is more
or less arbitrary. For instance, the introduction of emergency evacuations
could be done before or at the same time as normal exchanges. Furthermore,
the refinement process allows us to split the proofs of consistency of the final
event system. Event Synchronization is distributed through the guards.

This application has been developed under AtelierB. Almost all the gen-
erated proof obligations have been automatically discharged.

However, we do not yet have the internal architecture of the system. The
isolation of each component has not yet been done and, moreover, for each
component, we do not have an implementation. In order to illustrate the
whole process, we will present a second application which has been taken to
the point of implementation.

3 Flight Warning System (FWS): The event model

3.1 Introduction

This case-study - the flight warning system (FWS) used in the airbus A340
aircraft- was proposed by the Aerospatiale Company. FWS’s role is to mon-
itor aeroplane subsystems. When an abnormal situation appears, FWS must
decide on when, and how, to emit warning signals. One of the difficulties of
this study comes from an imposed constraint on the final architecture: the
system must be formed by two cyclic concurrent processes. The first one, P1,
deals with examining all the alarms. If an alarm is detected “present”, this
process confirms it after a pre-defined period of time. If an alarm is detected
’absent’, it removes it from the set of confirmed alarms. The second process,
P2, has also to examine all the alarms. It is charged with emitting signals
associated to the alarms which have been confirmed by the first process.

Since the two cycles are concurrent it is not possible to specify the applica-
tion as being the following sequence: P1 ; P2. We have to allow for the fact
that an alarm is examined by P2 before P1, therefore, in this case, no signal
will be emitted. Let us imagine one alarm a being activated at a time t. Six

96

Lopez, Simonot, Viguie

cases are possible:

(i) t ...P1 ...P2: the alarm a ’happens’ before its examination by P1 and
P2. The alarm is treated by P1 during its running cycle and is treated by
P2. A signal is emitted 3 .

(ii) t ...P2 ...P1: the alarm a happens before its examination by P1 and
P2. The alarm is treated by P2. As a has not yet been examined by P1,
no signal is emitted during the running cycle of P2. A signal for a will
be emitted during the next cycle of P2 except if P1, during its own next
cycle, examines a before P2 and detects that a is absent.

(iii) P1 ...P2 ...t or P2 ...P1 ...t: a will be treated by the two processes
during their next cycles.

(iv) P1 ...t ...P2: same as situation 3.

(v) P2 ...t ...P1: during its running cycle, P1 examines and confirms a.
P2 will treat a during its next cycle (unless P1 detects absence of a).

3.2 The Event model

Here, we present a simplified version of the case study which does not cover
details concerning the flying phases and the signal composition. A complete
description is given in [Lop 96-1], [Lop 96-2].

The role of the event specification is to model the interactions between
components and the environment. To do so, we need the set of alarms WW
and the set of signals Ss, and the following variables:
wp: set of emitted alarms,
se: set of emitted signals,
wc: set of confirmed alarms,
We1, Wp1: alarms examined and detected present by P1

We2, Wc2 alarms examined and detected confirmed by P2.
Num1: counter. Number of executed cycles of P1.
Num2: counter. Number of executed cycles of P2.

With this model, we observe the following:
the beginning of presence (NewWarning) and the end of presence (EndWarning)
of a warning situation (interaction with the environment),
the beginning of the emission (EmittedSignal) and the end (EndSignal) of
a signal (interaction between P2 and the environment),
the confirmation (ConfirmWarning1) and its end (AbsentWarning1) of an
alarm (interaction between P1 and P2),
the examination (ExamineWarning1) of an alarm by P1 (interaction between
P1 and the environment),
the examination (ExamineWarning2) of an alarm by P2 (interaction between

3 In the real system the signal can be emitted but there is no guarantee of this as the
aeroplane can be in a state where many alarms are activated, so there is a competition
[Lop 96-1].

97

Lopez, Simonot, Viguie

P2 and the environment),
the beginning of a new cycle of P1 (BeginCycle1),
the beginning of a new cycle of P2 (BeginCycle2).

This event model is built as explained in the previous section.

SYSTEM FWS2

SETS Ww, Ss

VARIABLES wp, se, wc, Num1, Wp1, We1, Wc2, We2, Num2

INVARIANT wp, wc, Wp1, We1, Wc2, We2 ⊆ Ww ∧ se ⊆ Ss ∧ Num1, Num2 ∈ NAT

INITIALIZATION wp, se, wc, Num1, Wp1, We1 Wc2, We2,Num2 : (wp = ∅ ∧ se = ∅ ∧ wc = ∅ ∧ Num1 = 0

∧Wp1 = ∅ ∧ We1 = ∅ ∧ Wc2 = ∅ ∧ We2 = Ww ∧ Num2 = 0)

EVENTS

NewWarning =̂ /* A new alarm is présent */ EndWarning =̂ /* End of an alarm */

ANY wx WHERE wx ∈ Ww ∧ wx /∈ wp ANY wx WHERE wx ∈ wp

THEN wp := wp ∪ {wx} END; THEN wp := wp − {wx} END;

EmittedSignal =̂ /* A new signal is emitted */ EndSignal =̂ /* Extinction of a Signal */

ANY sx WHERE sx ∈ Ss ∧ sx /∈ se ANY sx WHERE sx ∈ se

THEN se := se ∪ {sx} END; THEN se := se − {sx} END;

ExamineWarning1 =̂ /* P1 is examining an alarm */ ConfirmWarning1 =̂ /* P1 confirms an alarm */

ANY wx WHERE wx ∈ Ww ∧ wx /∈ We1 ANY wx WHERE wx ∈ Ww ∧ wx /∈ wc

/* wx has not yet been examined */ THEN wc := wc ∪ {wx} END;

THEN

IF wx ∈ wp THEN /* The alarm is present */ AbsentWarning1 =̂ /* P1 indicates that wx is absent */

Wp1, We1 := Wp1 ∪ {wx}, We1 ∪ {wx} ANY wx WHERE wx ∈ Ww

ELSE We1 := We1 ∪ {wx} END THEN wc := wc − {wx} END;

END;

BeginCycle1 =̂ /* New cycle for P1 */ BeginCycle2 =̂ /* New cycle for P2 */

SELECT We1 = Ww SELECT We2 = Ww

THEN We1, Wp1, Num1 := ∅, ∅, Num1 + 1 THEN We2, Wc2, Num2 := ∅, ∅, Num2 + 1

/* All the alarms will be examined */ /* All the alarms will be examined */

END; END;

ExamineWarning2 =̂ /* P2 is examining an alarm */

ANY wx WHERE wx ∈ Ww ∧ wx /∈ We2 /* wx has not yet been examined : wx /∈ We2 */

THEN IF wx ∈ wc

THEN Wc2, We2 := Wc2 ∪ {wx}, We2 ∪ {wx} /* The alarm is confirmed */

ELSE We2 := We2 ∪ {wx} END /* The alarm is not confirmed */

END;

Note that interactions between P1 and P2 are achieved via the variable wc
which is modified by P1 and is accessed by P2.
Note also that the events BeginCycle1 and BeginCycle2 remove at once all
the elements of respectively we1, wp1 and we2, wc2: they model the beginning
of each cycle. As indicated in the guards (we1 = Ww and we2 = Ww), these
events can be activated only when all alarms have been examined by each
process.

4 From event models to modules: Introduction

The event system FWS2 models the interactions of the system with the envi-
ronment and between the two processes P1 and P2.
We will now illustrate, along with this example, the end of the process: go-
ing from this event system to the specification of each component and to the
specification of the interface module.

98

Lopez, Simonot, Viguie

In order to do so, we have first to transform the event system into a module
which will be shared by the components. Its role is to provide each component
with the operations it needs in order to interact with the environment: this is
the interface module.
The specification of each component is not directly derived from the event
model. It must be elaborated separately and it must contain the properties
characterizing the component on its own. Don’t forget that these properties
have not been taken into account in the event model. Here component spec-
ifications can use some variables of the interface module. By doing so, we
can relate local properties of the component to the expected behaviour of the
whole system. This specification can later be refined in order to obtain its
implementation.

We will now illustrate this part of the process step by step.
Modules and operations. A module specification MS = (x, IM,A,Oi) is
formed by a shared variable x that represents the module state, an invariant
IM that expresses static properties of the module, the specification A that
initializes the module and the set of operations Oi for i ∈ 1..n that defines
the dynamics. Each operation Oi takes the form of a pre-post specification
(Pi(x), Qi(x, x′)). In the syntax of the tool, it takes the form Pre P (x) THEN

S where S is a generalized substitution. As there is a translation of gener-
alized substitution into before-after predicates [Abr 96-1], it corresponds to
the usual pre-post formulation for program specification. Such modules are
transition systems, whose initial states are defined by the initialization, and
whose transitions are defined by the operations. From this semantic point of
view, modules and event systems are equivalent.
Consistency of a module. A module is said to be consistent if the invariant
is established by the initialization and preserved by each operation.
Refinements. A module M is refined by M1 if each operation of M is refined
by the corresponding operation of M1 and if the initialization of M is refined
by the initialization of M1. An operation, this is, a program specification
(P,Q), is refined by another one (R,S) if for all program t, {R} t {S} implies
{P} t {Q}. These proof obligations are generated by the tools. There is a
semantic difference between an operation and an event: refining a program
specification allows to weak the pre-condition whereas refining an event allows
to strength the guard.
Module implementations. Let M be a module (x, IM,A,Oi) . An imple-
mentation of M is a set of programs t0, t1, ..., tn such that:
{true} t0{A ∧ IM}, and {IM ∧ Pi} ti {IM ∧ Qi}.
Those conditions plus the consistency of M , implies the following property:
For all M we have {true} t0;M(t1, . . . , tn){IM} where M is a combination
with if then else, while, sequence (;) and operations Oi. In other words, the
invariant is satisfied by all module states.
Module importation. We can import a module to implement another one
[Abr 96-1].

99

Lopez, Simonot, Viguie

Let M be the same module as before and M1 be (x, IM1, A1, Vi) (for i ∈
1..k). Each Vi is of the form (Ri, Si). To implement M1 through an importation
of M , we have:

(i) to provide for each Vi an expression Mi(O1, ..., On) built with combina-
tions of calls of Oi,

(ii) to prove that Vi�Mi(O1, ..., On).

If the imported module M has an implementation i.e. a set of programs
t0, t1, ..., tn such that: {true} t0{A ∧ IM}, and {IM ∧ Pi} ti {IM ∧ Qi}, the
conditions above ensure that, for all M:
{true} t0;M(M1(t1, . . . , tn), . . . ,Mk(t1, . . . , tn)){IM1}.

5 Towards an interface module: first step

5.1 Transformation of an event into an operation

An event system specification allows us to observe a complete system - a
system which does not interact with the observer. So, a system specification
models a closed universe. A program taking inputs and producing outputs is
not a closed universe. The way to connect these two approaches is to consider
the event system as a tool to observe the program behaviour. This is the case
if each transition allowed by an operation is also a possible transition of the
event which corresponds to this operation [Lop,Sim,Don 00], [Lop 02].
Then, to transform a system into a module, it suffices to transform each event:
E = any a where G(x, a) then Sx,a into the operation
[res ←−]op(a) = pre G(x, a) then Sx,a.

We can freely add output parameters. It is obvious that in this case, the
event system and its corresponding module define the same transition system.

More complex translations can be done between events and operations. In
these cases, some proof obligations have to be generated and discharged. For
more details, see [Lop 02], chapter 5.7.

5.2 Application to FWS

The module interface is obtained from FWS2 following the translation defined
above.

MACHINE FWS ENV

VARIABLES wp, se, wc, Num1, Wp1, We1, Wc2, We2, Num2

INVARIANT wp, wc, Wp1, We1, Wc2, We2 ⊆ Ww ∧ se ⊆ Ss ∧ Num1, Num2 ∈ NAT

INITIALIZATION wp, se, wc, Num1, Wp1, We1 Wc2, We2,Num2 :

(wp = ∅ ∧ se = ∅ ∧ wc = ∅ ∧ Num1 = 0 ∧ Wp1 = ∅ ∧ We1 = ∅ ∧
Wc2 = ∅ ∧ We2 = Ww ∧ Num2 = 0)

OPERATIONS

NewWarning(wx) =̂ EndWarning(wx) =̂

PRE wx ∈ Ww ∧ wx /∈ wp PRE wx ∈ wp

THEN wp := wp ∪ {wx} END; THEN wp := wp − {wx} END;

EmittedSignal(sx) =̂ ConfirmWarning1(wx) =̂

PRE sx ∈ Ss ∧ sx /∈ se PRE wx ∈ Ww ∧ wx /∈ wc

THEN se := se ∪ {sx} END; THEN wc := wc ∪ {wx} END;

100

Lopez, Simonot, Viguie

EndSignal(sx) =̂ AbsentWarning1(wx) =̂

PRE sx ∈ Se PRE wx ∈ Ww

THEN se := se − {sx} END; THEN wc := wc − {wx} END;

bres ←− ExamineWarning2(wx) =̂ bres ←− ExamineWarning1(wx) =̂

PRE wx ∈ Ww ∧ wx /∈ We2 PRE wx ∈ Ww ∧ wx /∈ We1

THEN THEN

IF wx ∈ wc IF wx ∈ wp

THEN Wc2, We2, bres := THEN Wp1, We1, bres :=

Wc2 ∪ {wx}, We2 ∪ {wx}, TRUE Wp1 ∪ {wx}, We1 ∪ {wx}, TRUE

ELSE We2, bres := ELSE We1, bres :=

We2 ∪ {wx}, FALSE END We1 ∪ {wx}, FALSE END

END; END;

BeginCycle2 =̂ BeginCycle1 =̂

PRE PRE

We2 = Ww We1 = Ww

THEN We2, Wc2, Num2 := THEN We1, Wp1, Num1 :=

∅, ∅, Num2 + 1 END ∅, ∅, Num1 + 1 END;

6 Toward an interface module: second step

6.1 Logical and abstract variables

All module variables are used to express properties. Some of them model
objects which will be effectively implemented by the program -they are named
abstract variables, and have an operational content. Others are only logical
-they are called logical or auxiliary variables [Aba,Lam 88]. Abstract variables
are the only ones transformed during the module refinement process. They
are implemented as well as data-refined. Logical variables will not appear in
the final implementation.

Let M be a module which contains abstract variables (a) and logical vari-
ables (l). Let M1 be the module obtained from M when all the expressions
where logical variables appear, are eliminated. We want to take, as an imple-
mentation of M , any implementation of M1. This is possible if each operation
OM of M is of the following form:
OM = (p(a) ∧ pl(a, l) , q(a, a′) ∧ ql(a, l, l′))
and satisfies :
∀a, a′, l. (p(a) ∧ pl(a, l) ∧ q(a, a′) → ∃l′. ql(a, l, l′)).
Consider now the corresponding operation in M1. It takes the form: opM1 =
(p(a) , q(a, a′)).

So we have:

(i) as soon as OM can be activated, OM1 can also be activated (the pre-
condition has been constrained).

(ii) abstract variables a, a′ do not depend on logical variables (but l may
depend on a).

(iii) under the pre-condition of OM , all the states which can be reached by
OM1 are also attainable by OM . This means that, during the refinement
process, whatever implementation choice is made which reduces the in-

101

Lopez, Simonot, Viguie

ternal non-determinism of OM1 , it will realize the post-condition of OM .

These constraints ensure that any implementation of M1 is also an implemen-
tation of M [Lop 02].

From this, we can roughly consider M as an overloading of M1.

Logical variables allow to express logical properties, which involve notions
not directly present in M . These variables also allow to constrain the use of
operations of M1.

6.2 Application to FWS

In the interface module FWS ENV, abstract variables are those used to commu-
nicate with the environment. Other variables are logical:

VARIABLES wp, se, wc

LOGICAL VARIABLES Num1, Wp1, We1, Wc2, We2, Num2

The base module corresponding to FWS ENV i.e. FWS ENV without logical
variables is:

MACHINE FWS BASE

VARIABLES wp, se, wc

INITIALIZATION wp, se, wc: wp = ∅ ∧ se = ∅ ∧ wc = ∅
OPERATIONS

NewWarning(wx) =̂ EndWarning(wx) =̂

PRE wx ∈ Ww ∧ wx /∈ wp PRE wx ∈ wp

THEN wp := wp ∪ {wx} END; THEN wp := wp − {wx} END;

EmittedSignal(sx) =̂ ConfirmWarning1(wx) =̂

PRE sx ∈ Ss ∧ sx /∈ se PRE wx ∈ Ww ∧ wx /∈ wc

THEN se := se ∪ {sx} END; THEN wc := wc ∪ {wx} END;

EndSignal(sx) =̂ AbsentWarning1(wx) =̂

PRE sx ∈ Se PRE wx ∈ Ww

THEN se := se − {sx} END; THEN wc := wc − {wx} END;

bres ←− ExamineWarning2(wx) =̂ bres ←− ExamineWarning1(wx) =̂

PRE wx ∈ Ww PRE wx ∈ Ww

THEN THEN

IF wx ∈ wc IF wx ∈ wp

THEN bres := TRUE THEN bres := TRUE

ELSE bres := FALSE END ELSE bres := FALSE END

END; END;

This interface module is the effective interface module. NewWarning and
EndWarning are implemented by the devices which detect warning situations
(sensors and other electronic devices); EmittedSignal and EndSignal are im-
plemented by output devices; ExamineWarning1 is implemented by a mecha-
nism provided by the environment to obtain inputs and so on...

Note that BeginCycle1 and BeginCycle2 have disappeared. They are, in
fact, logical operations which formally express the necessity of examining all
the alarms. They have a logical control role.

102

Lopez, Simonot, Viguie

7 Component specification

7.1 Sharing

At this point, we have an interface module which provides the communication
operations of the system. We have now to write the component specifications.
In this application, we want:
1- to have the interface module E=(x, IE,A, Vi).
2- to model each component in a separate and independent module: M1 =
(x, y, IM1, A1,Wi) and M2 = (x, z, IM2, A2, Si). By independent, we mean
that the consistency is proved independently for each module. It also means
that each module has to be refined independently.
3- to force each module to be implemented using an import of the same inter-
face module E. E becomes a shared module.
4- to preserve the correctness. By correctness, we mean that every interleaving
of calls of programs realizing M1 and M2 operations (which modify interface
variables through operation calls of E) establishes both the invariants of M1

and M2.
Formally: for every program tVj

which realizes Vj and for every combination
N1 of tVj

and N2 of tVj
we must have:

{true} IE; A1; A2; (N1||N2) {IM1 ∧ IM2}.
As E needs to be shared by M1 and M2, the correctness cannot be expressed
locally on each component module.

This is clearly not true in general: as M1 and M2 can share variables of E,
an operation of M2 can break the invariant of M1 and vice-versa.

To avoid this problem, one solution is the following:
• For each component Mj we must identify the set of operations Oj of E which
are exclusively used by Mj. Oj is the set of operations that Mj will be allowed
to use.
• Let Rj be the set of variables modified by Oj, Rj ⊆ x. Rj is the set of
variables that can be used by Mj.

7.2 Application to FWS

We are able now to model the two processes P1 and P2. We focus on P2,
the model of P1 can be made in the same way. First we have to extract
the FWS ENV operations which will only be used by the process P2. They are
EmittedSignal, EndSignal, ExamineWarning2, BeginCycle2. So the vari-
ables of P2 coming from FWS ENV are se,Wc2,We2,Num2. It will also include
its proper variables in order to express its own local properties. The proper
variables are: wa, wni, wnis, sa, snc, they have been introduced to formalize
the following local properties:
1. Confirmed warnings not inhibited by the current fly phase are activated
warnings. Wc2 ∩ wni ⊆ wa.
2. No cancelled signals, associated with activated warnings, are activated sig-

103

Lopez, Simonot, Viguie

nals.
3. Activated warnings are confirmed warnings.
4. Activated signals are associated to activated warnings.
5. Emitted signals are activated signals.
6. The crew is always able to determine the warnings associated to emitted
signals.

Another property is, that during each cycle, all the alarms must be exam-
ined. This is expressed by We2 = Ww. We use here logical variables. As
the process P2 is cyclic, the module includes only one operation Cycle2 with
a true pre-condition and which models a step of the cycle. All the properties
of the module are expressed into the invariant - the post-condition of Cycle2
just establishes the invariant and counts the number of steps.

MACHINE P2 Processus 2.

SETS Ww, Ss

CONSTANTS s w, c w

PROPERTIES s w ∈ Ss → Ww ∧ c w ∈ Cc ↔ Ww

VARIABLES se, Wc2, We2, Num2, wa, wni, wnis, sa, snc

INVARIANT

se ⊆ Ss ∧ Wc2 ⊆ Ww ∧ We2 ⊆ Ww ∧ Num2 ∈ NAT ∧ wa ⊆ Wc2 ∧
wni ⊆ Ww ∧ wnis ⊆ wa ∧ sa ⊆ Ss ∧ se ⊆ sa ∧ snc ⊆ Ss ∧
Wc2 ∩ wni ⊆ wa ∧ (Property 1.)

s w−1[wa] ∩ snc ⊆ sa ∧ (Property 2.)

wa ⊆ Wc2 ∧ (Property 3.)

s w[sa] ⊆ wa ∧ (Property 4.)

se ⊆ sa ∧ (Property 5.)

wnis ⊆ ran(c w) ∧ (Property 6.)

We2 = Ww communication property

INITIALIZATION

se, Wc2, We2, Cc2, Ce2, Pc2, Pe2, Num2

wa, wni, wnis, sa, snc: INV ARIANT

OPERATIONS

Cycle2 =̂

se, Wc2, We2, Num2, wa, wni, wnis, sa, snc:

(INV ARIANT ∧ Num2 = Num2 0 + 1)

END

Note that the variable Num2, which is incremented by each cycle, forces
each implementation of Cycle2 to behave correctly: if this increment does not
occur, a refinement of Cycle2 by skip would still be correct.
When Num2 is incremented, the following happens:
Num2 is a variable “coming” from FWS ENV, hence each implementation of
Cycle2 will call BeginCycle2 as it is the only operation of FWS ENV which
modifies Num2. Each implementation must reestablish the invariant, as it is
the post-condition of Cycle2. And, in particular, it must establish We2 =
Ww. This can only be done by as many calls to ExamineWarning2, as the
number of alarms in Ww.

104

Lopez, Simonot, Viguie

8 Conclusion

A first result of this work is to propose a method which takes into account
the entire development of a system. This method has been used to model two
industrial case studies. We have used the existing tools (in our case Atelier
B) to formally prove a large part of the proof obligations generated by the
method and which is actually supported by these tools. Almost all the gen-
erated proof obligations have been automatically discharged (around 85 %).
The new notions : logical variables, shared modules and event-to-operation
transformations, generate new proof obligations. They are not supported by
the actual tools ; these proof obligations have been proved “by hand”. The
fact that it has been used on industrial cases, shows that the proposed method
is suitable to treat large-scale systems. Secondly, what is interesting is that
these new notions solve the problems met in previous works, when we tried
to model applications of this kind with only the notion of module [Lop 96-1].
Another point of interest is that these extensions do not represent a profound
modification to the existing theory. Hence, their incorporation into existing
tools can be achieved.

Further work has to be done to improve (to refine) the conditions we have
formulated in order to ensure the correctness of the whole process.

Acknowledgements: The authors want to express their gratitude to the
persons which have made this work possible: J.R. Abrial, A. Burlureau,
P.Desforges, the Matra team and Aerospatiale.

References

[Atelier B] ClearSy, http://www.atelierb.societe.com/index.html

[B Toolkit] B-Core http://www.b-core.com/btoolkit.html

[Aba,Lam 88] M. Abadi and L. Lamport, The existence of refinement mappings,
Technical Report. Digital Systems Research Center, Palo Alto, California,
1988.

[Abr 96-1] Abrial J.R., The B Book. Assigning programs to Meanings, Cambridge
University Press, 1996.

[Abr 96-2] Abrial J.R., Extending B without changing it, for Developing Distributed
Systems, in First B conference, H.Habrias editor, 169-190, Nantes, 1996.

[Back 88] Back R.J., A calculus of refinements for program derivations, Acta
Informatica 25, 593-624, 1988.

[Back,Kur 88] Back R.J.R., Kurki-Suonio R., Distributed cooperation with action
systems, in ACM Transactions on Programming Languages and Systems,
vol. 10, No. 4, pages 513-554, ACM, 1983.

105

Lopez, Simonot, Viguie

[But 96] Butler M.J., Stepwise refinement of communicating systems, Science of
Computer Programming 27, 139-173, 1996.

[Lam,Sha 90] Lam S.S., Shankar U., A Relational Notation for State Transition
Systems, in IEEE Transactions on Software Engineering, Vol 16, No 7,
755-775, 1990.

[Lop 96-1] Lopez N., Construction de la specification formelle d’un systeme
complexe, in First B conference, H.Habrias editor, 63-119, Nantes, 1996.

[Lop 96-2] Lopez N., Construction de la specification formelle d’un systeme
complexe, Memoire d’ingenieur CNAM, 1996.

[Lop 99] Lopez N., An ’event based B’ industrial experience, in the proceedings of
the B user Group Meeting, edited by Ken Robinson, Applying B in an
industrial context, World Congress on Formal Methods 1999.

[Lop,Sim,Don 00] Lopez N., Simonot M., Donzeau-Gouge V., Deriving software
specifications from event-based models, in the proceedings of the 1st
International Conference of B and Z users, edited by Jonathan P. Bowen,
Steve Dunne, Andy Galloway, Steve King, Lecture Notes in Computer
Science 1878, 209-229, Springer, 2000.

[Lop 02] Lopez N., Spécification Formelle de Systèmes Complexes, Méthodes et
Techniques”, These CNAM, 2002.

[Morg 90] Morgan C., Programming from Specifications, Prentice-Hall International.
1990.

106

Daws, Kwiatkowska, Norman

Automatic Verification of the
IEEE-1394 Root Contention Protocol

with KRONOS and PRISM �

Conrado Daws a,1, Marta Kwiatkowska b, Gethin Norman b

a CWI, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands
Conrado.Daws@cwi.nl

b University of Birmingham, Birmingham B15 2TT, United Kingdom
{M.Z.Kwiatkowska,G.Norman}@cs.bham.ac.uk

Abstract

We report on the automatic verification of timed probabilistic properties of the IEEE
1394 root contention protocol combining two existing tools: the real-time model-
checker Kronos and the probabilistic model-checker Prism. The system is modelled
as a probabilistic timed automaton. We first use Kronos to perform a symbolic
forward reachability analysis to generate the set of states that are reachable with
non-zero probability from the initial state, and before the deadline expires. We
then encode this information as a Markov decision process to be analyzed with
Prism. We apply this technique to compute the minimal probability of a leader
being elected before a deadline, for different deadlines, and study the influence of
using a biased coin on this minimal probability.

Key words: model checking, soft deadlines, probabilistic timed
automata, IEEE 1394, root contention protocol

1 Introduction

The design and analysis of many hardware and software systems, such as
embedded systems and monitoring equipment, requires detailed knowledge of
their real-time aspects, in addition to the functional requirements. Typically,
this is expressed in terms of hard real-time constraints; e.g. “after a fatal error,
the system will be shut down in 45 seconds”. In the case of safety-critical
systems, it is essential to ensure that such constraints are never invalidated.

� Supported in part by the EPSRC grant GR/N22960.
1 Supported by an ERCIM Fellowship.

c©2002 Published by Elsevier Science B. V.

Daws, Kwiatkowska, Norman

However, in other cases like multimedia protocols that perform in the pres-
ence of lossy media, such hard deadlines can be too restrictive. Soft deadlines
are then a viable alternative in these cases. For example, a soft deadline of a
multimedia system could be that “with probability at least 0.96, video frames
arrive within 80 to 100 ms after being sent”. Soft deadlines can also specify
fault-tolerance and reliability properties such as “deadlock will not occur with
probability 1”, or “the message will be lost with probability at most 0.01”.

Recent research [16,17] has set a theoretical framework for the specification
and verification of timed probabilistic systems. Inspired by the success of real-
time model-checkers such as Kronos [7] and Uppaal [18], the direction taken is
that of automatic verification through model checking, adapting the formalisms
and algorithms [1] for model-checking of timed systems to the case of timed
probabilistic systems. Within this approach 2 , timed probabilistic systems
are modelled as probabilistic timed automata [16], i.e. timed automata with
discrete probability distributions associated with the edges, and properties
are specified in the logic PTCTL, which extends the quantitative branching
temporal logic TCTL with a probabilistic operator. Due to the denseness of
time, model checking algorithms rely on the construction of a finite quotient
of the state space of the system, namely the region graph [16] or the forward
reachability graph [17]. By adding the corresponding probability distributions
to the transitions of the graph we obtain a Markov decision process (MDP).
The probability with which a state of this MDP satisfies a property can then
be calculated by solving an appropriate linear programming problem [6,5].

In this work we show how, based on these ideas, the real-time model-
checker Kronos [7,12] and the probabilistic model-checker Prism [13,19] can
be combined for the automatic verification of the root contention protocol of
IEEE 1394, a timed and probabilistic protocol to resolve conflicts between
two nodes competing in a leader election process. The property of interest
is the minimal probability for electing a leader before a deadline. We first
use Kronos 3 to perform a symbolic forward reachability analysis to generate
the set of states that are reachable with non-zero probability from the initial
state, and before the deadline expires. We then encode this information as
a Markov decision process in the Prism input language. Finally, we compute
with Prism the minimal probability of a leader being elected before a deadline,
for different deadlines, and investigate the influence of using a biased coin on
this minimal probability.

This article proceeds as follows. Section 2 introduces probabilistic timed
automata and defines probabilistic reachability. In Section 3 we describe the
features of Kronos and Prism used in our verification approach. The encoding
of the reachability graph in Prism input language is explained in Section 4.
Section 5 illustrates this approach with the verification of the root contention

2 In this work we consider systems where only discrete probabilities arise.
3 An experimental version, not yet distributed, that has been adapted to deal with proba-
bilistic timed automata and generate the required output, is used.

108

Daws, Kwiatkowska, Norman

error

send wait
x ≤ 5

x = 3

x ≤ 3
x ≥ 4 x := 0

x := 0

x := 0
0.01

0.99

Fig. 1. An example of a probabilistic timed automaton PTA1.

protocol of the IEEE 1394 standard. We conclude with Section 6.

2 Probabilistic Timed Automata

A timed automaton [2] is an automaton extended with clocks, variables with
positive real values which increase uniformly with time. Clocks may be com-
pared to positive integer time bounds to form clock constraints such as (x ≥
2) ∧ (x ≤ 5). There are two types of clock constraints: invariants labelling
nodes, and guards labelling edges. The automaton may only stay in a node,
letting time pass, if the clocks satisfy the invariant. When a guard is satisfied,
the corresponding edge can be taken. Transitions are instantaneous, and can
be labelled with clock resets of the form x := 0 meaning that upon entering
the target node the value of clock x is set to 0. Probabilistic automata have
probability distributions added to the edges, which model the likelihood of
the action happening.

Example 2.1 The probabilistic timed automaton PTA1 of Figure 1 models a
process which tries to send a packet after between 4 and 5 ms, and if successful
waits for 3 ms before trying to send another packet. The packet is sent with
probability 0.99 and lost with probability 0.01 because of an error. Notice that
edges belonging to a same distribution must be labelled with the same guard.

2.1 Syntax

Clocks and valuations. Let the set X of clocks be a set of variables taking
values from the time domain R+. A clock valuation is a point v ∈ R

|X |
+ . The

clock valuation 0 ∈ R
|X |
+ assigns 0 to all clocks in X . Let v ∈ R

|X |
+ be a clock

valuation, t ∈ R+ be a time duration, and X ⊆ X a subset of clocks. Then
v + t denotes the time increment for v and t, and v[X := 0] denotes the clock

valuation obtained from v ∈ R
|X |
+ by resetting all of the clocks in X to 0 and

leaving the values of all other clocks unchanged.

Zones. Let Z be the set of zones over X , which are conjunctions of atomic
constraints of the form x ∼ c and x−y ∼ c, with x, y ∈ X , ∼ ∈ {<,≤,≥, >},
and c ∈ N. A clock valuation v satisfies the zone ζ, written v |= ζ, if and only

109

Daws, Kwiatkowska, Norman

if ζ resolves to true after substituting each clock x ∈ X with the corresponding
clock value v(x). Let ζ be a zone and X ⊆ X be a subset of clocks. Then
→
ζ is the zone representing the set of clock valuations v + t such that v |= ζ
and t ≥ 0, and ζ[X := 0] is the zone representing the set of clock valuations
v[X := 0] such that v |= ζ.

Probability distributions. A discrete probability distribution over a finite
set Q is a function µ : Q → [0, 1] such that

∑
q∈Q µ(q) = 1. Let Dist(Q) be

the set of distributions over subsets of Q.

Definition 2.2 (Probabilistic timed automata.) A probabilistic timed
automaton is a tuple PTA = (L,X , Σ, I , P) where: L is a finite set of locations 4 ;
Σ is a finite set of labels; the function I : L → Z is the invariant condition;
and the finite set P ⊆ L × Z × Σ × Dist(2X × L) is the probabilistic edge
relation. An edge takes the form of a tuple (l, g,X, l′), where l is its source
location, g is its enabling condition, X is the set of resetting clocks and l′ is
the destination location, such that (l, g, σ, p) ∈ P and p(X, l′) > 0.

2.2 Semantics

A state of a probabilistic timed automaton PTA is a pair (l, v) where l ∈ L

and v ∈ R
|X |
+ such that v |= I (l). If the current state is (l, v), there is a

nondeterministic choice of either letting time pass while satisfying the invariant
condition I (l), or making a discrete transition according to any probabilistic
edge in P with source location l and whose enabling condition g is satisfied.
If the probabilistic edge (l, g, σ, p) is chosen, then the probability of moving to
the location l′ and resetting to 0 all clocks in X is given by p(X, l′).

The semantics of probabilistic timed automata is defined in terms of transi-
tion systems exhibiting both nondeterministic and probabilistic choice, called
probabilistic systems, which are essentially equivalent to Markov decision pro-
cesses.

2.2.1 Probabilistic systems.

A probabilistic system PS = (S,Act , Steps) consists of a set S of states, a
set Act of actions, and a probabilistic transition relation Steps ⊆ S × Act ×
Dist(S). A probabilistic transition s

a,µ−→ s′ is made from a state s ∈ S by
first nondeterministically selecting an action-distribution pair (a, µ) such that
(s, a, µ) ∈ Steps , and then by making a probabilistic choice of target state s′

according to µ, such that µ(s′) > 0.

Definition 2.3 (Semantics of probabilistic timed automata.) Given
a probabilistic timed automaton PTA = (L,X , Σ, I , P), the semantics of PTA
is the probabilistic system [[PTA]] = (S,Act , Steps) defined by the following.

(States) Let S ⊆ L × R
|X |
+ such that (l, v) ∈ S if and only if v |= I (l).

4 We sometimes identify an initial location l̄ ∈ L represented graphically by an incoming
arrow. In this case, the model starts in l̄ with all clocks set to 0.

110

Daws, Kwiatkowska, Norman

(Actions) Let Act = R+ ∪Σ. (Probabilistic transitions) Let Steps be the least
set of probabilistic transitions containing, for each state (l, v) ∈ S:

Time transitions. For each duration t ∈ R+, let ((l, v), t, µ) ∈ Steps if and
only if (1) µ(l, v + t) = 1, and (2) v + t′ |= I (l) for all 0 ≤ t′ ≤ t.

Discrete transitions. For each probabilistic edge (l, g, σ, p) ∈ P, let ((l, v), σ, µ) ∈
Steps if and only if (1) v |= g, and (2) for each state (l′, v′) ∈ S:

µ(l′, v′) =
∑

X⊆X & v′=v[X:=0]

p(X, l′) .

2.3 Probabilistic Reachability

The behaviour of a probabilistic timed automaton is described in terms of the
behaviour of its semantics, that is, the behaviour of a probabilistic system.

Paths. A path of a probabilistic system PS is a non-empty finite or infinite
sequence of transitions ω = s0

a0,µ0−−−→ s1
a1,µ1−−−→ · · · . For a path ω and i ∈ N, we

denote by ω(i) the (i + 1)th state of ω, and by last(ω) the last state of ω if ω
is finite.

Adversaries. An adversary is a function A mapping every finite path ω to
a pair (a, µ) ∈ Act × Dist(S) such that (last(ω), a, µ) ∈ Steps [22]. Let AdvPS

be the set of adversaries of PS. For any A ∈ AdvPS, let PathA
ful denote the set

of infinite paths associated with A. A probability measure ProbA over PathA
ful

can then be defined following [11].

Definition 2.4 Let PS = (S,Act , Steps) be a probabilistic system. Then the
reachability probability with which a set F ⊆ S of target states, can be reached
from a state s ∈ S, for an adversary A ∈ AdvPS, is:

ProbReachA(s, F)
def
= ProbA{ω ∈ PathA

ful | ω(0) = s &∃i ∈ N . ω(i) ∈ F} .

Furthermore, the maximal and minimal reachability probabilities are defined
respectively as

MaxProbReachPS(s, F)
def
= sup

A∈AdvPS

ProbReachA(s, F)

MinProbReachPS(s, F)
def
= inf

A∈AdvPS

ProbReachA(s, F)

3 Verification with KRONOS and PRISM

Due to the denseness of time, the underlying semantic model of a (probabilis-
tic) timed automaton is infinite, and hence effective decision procedures rely
on building a finite quotient of the state space, e.g. the region graph or the
forward reachability graph. This section describes the verification technique
based on the generation of the forward reachability graph with Kronos, and

111

Daws, Kwiatkowska, Norman

model checking the obtained graph encoded as a Markov decision process with
Prism.

3.1 Forward Reachability with KRONOS

The forward reachability algorithm of Kronos proceeds by a graph-theoretic
traversal of the reachable state space using a symbolic representation of sets of
states, called symbolic states [8]. A symbolic state is a pair of the form 〈l, ζ〉,
with l ∈ L and ζ ∈ Z, such that ζ ⊆ I (l); it represents all states (l, v) such
that v |= ζ. The traversal is based on the iteration of a successor operator in
two alternating steps: first the computation of the edge-successors and then
the computation of the time-successors of a symbolic state.

3.1.1 Edge Successors.

The edge-successor of 〈l, ζ〉 with respect to an edge e = (l, g,X, l′) is

edge succ(〈l, ζ〉, e) = 〈l′, (ζ ∧ g)[X := 0] ∧ I (l′)〉

3.1.2 Time Successors.

The time-successor of 〈l, ζ〉 is defined as

time succ(〈l, ζ〉) = 〈l,
→
ζ ∧I (l)〉

Figure 2 shows the reachability graph obtained for the probabilistic timed
automaton PTA1 for a deadline of 15 ms, measured with an extra clock y.
Since y is never reset, its value would increase indefinitely. To obtain a finite
reachability graph, we need to apply the extrapolation abstraction of [8], which
abstracts away the exact value of y when y > 15. Notice that this abstraction
is exact with respect to reachability properties.

3.2 Model Checking Reachability Properties with PRISM

Prism [19] is a model checker designed to verify different types of probabilistic
models: discrete-time Markov chains (DTMCs), Markov decision processes
(MDPs) and continuous-time Markov chains (CTMCs). Properties to be
checked are specified in probabilistic temporal logics, namely PCTL [6,5] if
the model is a DTMC or an MDP, and CSL [4] in the case of a CTMC. We
focus on the model checking of reachability properties on MDPs, since a (non-
deterministic) probabilistic reachability graph belongs to this class of model,
and deadline properties are specified as time bounded reachability properties.

3.2.1 Model Checking MDPs.

Model checking of Markov decision processes is based on the computation of
the minimal probability p(s,�φ) or the maximal probability P(s,�φ) with
which a state s satisfies a reachability formula �φ. Then, a state s satisfies

112

Daws, Kwiatkowska, Norman

send
x ≤ 5

y − x ∈ [7, 8]

send
x ≤ 5

y − x ≥ 14

wait
x ≤ 3

y − x ∈ [4, 5]

error
x = 0

y ∈ [4, 5]

send
x ≤ 5

y − x > 15

0.99 0.99

wait
x ≤ 3

y − x ∈ [11, 13]

wait
x ≤ 3

y − x > 15

error
x = 0

y ≤ 15

error
x = 0

y > 15

0.99

0.01 0.01 0.01

0.99

0.01

0

2

3

4

5

6

7

8

9

10

11

send
x ≤ 5

y − x = 0

error before error after
x = y x = y

1

Fig. 2. Reachability graph of PTA1

the PTCL formula P≤λ(�φ) iff P(s,�φ) ≤ λ, and P≥λ(�φ) iff p(s,�φ) ≥ λ.
Maximal and minimal probabilities are computed by solving a linear program-
ming problem [6,9]. The iterative algorithms implemented in Prism to solve
this problem can combine different numerical computation methods with dif-
ferent data structures [13,14].

3.2.2 Model Checking PTAs.

We verify a PTA by model checking its probabilistic reachability graph using
the following result [17]: the maximal probability computed on the reachability
graph is an upper bound to the maximal probability defined on the semantic
model of the probabilistic timed automaton. That is,

MaxProbReachPS(s, F) ≤ P(s,�φF),

where φF is a formula characterizing the set of states F .

4 Encoding of a Reachability Graph in PRISM

The reachability graph obtained with Kronos is a list of symbolic states and
transitions between them. In order to model-check probabilistic properties
we must encode it as a Markov decision process using Prism’s description
language, a simple, state-based language, similar to Reactive Modules [3].

The behaviour of a system is described by a set of guarded commands of
the form [] <guard> -> <command>. A guard is a predicate over variables of
the system. A command describes a transition which the system can make if
the guard is true, by giving a new value to primed variables as a function on
the old values of unprimed variables. We consider two types of encoding of a
reachability graph in this language.

113

Daws, Kwiatkowska, Norman

4.1 Explicit Encoding

The first solution is a direct explicit encoding of the reachability graph using
a single variable s whose value is the index of the state of the reachability
graph. Transitions of the system are encoded by guarded commands such
that the guard tests the value of s and the command updates it according to
the transition relation of the reachability graph. For example, the encoding
of the outgoing transitions from states 0, 4 and 7, corresponding to location
send in the reachability graph of Figure 2 is:

[] (s=0) -> 0.99:(s’=1) + 0.01:(s’=2)

[] (s=4) -> 0.99:(s’=5) + 0.01:(s’=6)

[] (s=7) -> 0.99:(s’=8) + 0.01:(s’=9)

This encoding generates a description the size of the reachability graph,
which can grow drastically with the value of the deadline. Prism involves a
model construction phase, during which the system description is parsed and
converted into an MTBDD representation for further analysis. This phase
can be extremely time consuming when the input file does not correspond to
a modular and structured description of a system, such as with the explicit
encoding. Thus, an encoding allowing for a more compact description of the
system is needed.

4.2 Instances Encoding

States of a reachability graph correspond to several instances of locations of
the timed automaton from which it was generated. We can then encode them
with two variables, a location variable l and an instance variable n describing
to which instance of the location it corresponds. For example, let l = 0 be
the value of the location variable corresponding to send. Then, states 0, 4 and
7 correspond to three different instances of this location, say n = 0, n = 1 and
n = 2. Then, the outgoing transitions from states corresponding to send can
be specified by:

[] (l=0)&(n=0) -> 0.99:(l’=1)&(n’=0) + 0.01:(l’=2)&(n’=0)

[] (l=0)&(n=1) -> 0.99:(l’=1)&(n’=1) + 0.01:(l’=2)&(n’=1)

[] (l=0)&(n=2) -> 0.99:(l’=1)&(n’=2) + 0.01:(l’=2)&(n’=2)

4.2.1 Relative compaction

The instance variable n is left unchanged by the command, meaning that the
transition only affects the location variable for instances 0, 1 and 2. This
is equivalent to write that n′ = n, which can be omitted since, by default, a
non updated variable takes its old value. Thus, the transitions above can be
described more compactly in a single line:

[] (l=0)&(0<=n<=2) -> 0.99:(l’=1) + 0.01:(l’=2)

114

Daws, Kwiatkowska, Norman

Since in a reachability graph a transition between two given locations can
be repeated several times for different instances, this encoding allows us to
specify them in a more compact manner. We will refer to this as the relative
compaction, because it is based on specifying the updated value n′ relative to
its old value n.

The compaction algorithm is based on a traversal of the set of transitions
of the reachability graph in order to find those which correspond to the same
update command, and then describe them in a single line as a transition from
multiple sates. Moreover, we combine different source states corresponding to
the same location and successive numbers of instance, in a simple constraint
where n is between two bounds, as in the example above.

4.2.2 Absolute compaction

In a reachability graph, we can encounter states which are the destination
of many different transitions, such as state error before (l = 3, n = 0) in the
example of Figure 2. In this case, if we specify the updated value n′ with its
absolute value, an algorithm similar to the one above will allow us to describe
all the incoming transitions in a single line. For example, the two transitions
to error before can be described by:

[] (l=2)&(0<=n<=1) -> 1:(l’=3)&(n’=0)

We will refer to this as the absolute compaction, because it is based on speci-
fying the absolute value of n′. Note that this compaction could also be applied
to the explicit encoding. However, since in practise the relative compaction
leads to a more compact description, compaction algorithms have only been
implemented in the case of the instances encoding. Absolute compaction is
especially interesting when used in combination with the relative one.

4.2.3 Combination

The heuristic implemented consists in first applying the relative compaction
and then, for those transitions that couldn’t be compacted, change the way
the command updates the value of n from relative to absolute, and apply the
absolute compaction.

5 Verification of the Root Contention Protocol

The IEEE 1394 High Performance serial bus is used to transport digitized
video and audio signals within a network of multimedia systems and devices,
such as TVs, PCs and VCRs. It has a scalable architecture, and it is hot-
pluggable, meaning that devices can be added or removed from the network
at any time, supports both isochronous and asynchronous communication and
allows quick, reliable and inexpensive data transfer. It is currently one of the
standard protocols for interconnecting multimedia equipment. The system
uses a number of different protocols for different tasks, including a leader

115

Daws, Kwiatkowska, Norman

election protocol, called tree identify protocol.

The tree identify protocol is a leader election protocol which takes place
after a bus reset in the network, i.e. when a node (device or peripheral) is
added to, or removed from, the network. After a bus reset, all nodes in the
network have equal status, and know only to which nodes they are directly
connected, so a leader must then be chosen. The aim of this protocol is to
check whether the network topology is a tree and, if so, to construct a spanning
tree over the network whose root is the leader elected by the protocol.

In order to elect a leader, nodes exchange “be my parent” requests with
their neighbours. However, contention may arise when two nodes simultane-
ously send “be my parent” requests to each other. The solution adopted by
the standard to overcome this conflict, called root contention, is both prob-
abilistic and timed: each node will flip a coin in order to decide whether to
wait for a short or for a long time for a request. The property of interest of
the protocol is whether a leader is elected before a certain deadline, with a
certain probability or greater.

5.1 The Model

The probabilistic timed automaton I
p
1 in figure 3 is the abstract model of the

root contention protocol considered in [15]. It is a probabilistic extension of
the timed automaton I1 of [20] where each instance of bifurcating edges corre-
sponds to a coin being flipped. For example, in the initial location start start,
there is a nondeterministic choice corresponding to node 1 (resp. node 2)
starting the root contention protocol and flipping its coin, leading with prob-
ability 0.5 to each of slow start and fast start (resp. start slow and start fast).
For simplicity, probability labels are omitted from the figure and probabilistic
edges are represented by dashed arrows.

The timing constraints in I
p
1 correspond to those specified in the updated

standard IEEE 1394a. For instance, 360 ns corresponds to the transmission
delay in the network if nodes are connected using a long wire. Other types
of wire will have a different transmission delay, and hence can be verified by
changing this value and re-running the experiments. Naturally, a lower delay
results in a greater or equal probability of electing a leader before a deadline.

5.2 Verification

We first generate the reachability graph of the probabilistic timed automaton
I

p
1 until a deadline D is exceeded. To do this, we add an additional clock

y, which measures the time elapsed since the beginning of the execution.
Upon entering the location done, we test in time zero (clock x is reset in
all incoming edges, and an invariant x = 0 forces the system to leave the
location immediately) whether the deadline is exceeded or not, by adding two
outgoing edges from done, one with the guard y > D leading to a location
done after and one with the guard y ≤ D leading to a location done before.

116

Daws, Kwiatkowska, Norman

x≥400 x≥1230

x:=0

y>Dy≤D

x:=0

x = 0

done

x≤850 x≤1670 x≤1670

slow fast slow slow

x≤1670

x≤360x≤360x≤360x≤360

x:=0

x≥1590

x:=0

x≥760

fast slow

start start

fast fast

start fastfast start start slow slow start

x:=0
x:=0

x:=0
x:=0 x:=0 x:=0

x:=0 x:=0

x≥1230

x≤360

x≥1230

done
before

done
after

Fig. 3. Probabilistic timed automaton Ip
1 modelling the root contention protocol.

Then, we specify the property of the root contention protocol we are
interested in, namely, that a leader is elected before the deadline with at
least a given probability. The PCTL formula that specifies this property is
P≥λ(� (done ∧ y ≤ D)), which cannot be verified with our technique because
the probabilistic quantifier P≥λ is not of the correct form. However, it can be
shown [15] that it is equivalent to the formula P<1−λ(� done after) which can
actually be verified on the reachability graph.

5.3 Experimental Results

In order to verify the property above, we compute the minimal probability
for electing a leader before the deadline, for deadlines ranging from 4µs to
100µs. These experiments were performed on a PC running Linux, with a
1400 MHz processor and 512 MB of RAM. Prism was used with its default
options. Additional information can be found in [19].

Table 1 shows the results concerning the generation with Kronos of the
reachability graph and of its encoding as an MDP. The first two columns give
information about the generation of the reachability graph, its size in terms
of the number of states and the time in seconds needed to generate it. The
remaining columns show the size, in number of lines (i.e. transitions), of
the MDP file generated by Kronos, for the different encodings we considered:
explicit, instances with either absolute or relative compaction, and with both
of them.

Figure 4 shows the evolution of the number of lines of the generated file for
different values of the deadline. It demonstrates that the instances encoding
allows for compactions which reduce drastically the number of lines of the

117

Daws, Kwiatkowska, Norman

Table 1
Generation and encoding of the reachability graph

deadline forw. reach. explicit instances instances instances

(µs) states time (s) abs rel abs+rel

10 526 0.03 709 421 126 39

20 1876 0.09 2531 1501 368 72

30 4049 0.20 5466 3240 734 100

40 7034 0.46 9499 5629 1223 126

50 10865 1.23 14674 8694 1842 159

60 15511 2.74 20952 12412 2586 186

80 27296 8.94 36868 21841 4437 243

100 42401 22.29 57274 33926 6797 303

0

10000

20000

30000

40000

50000

60000

20 40 60 80 100 120

N
um

be
r

of
 li

ne
s

Deadline (micro seconds)

Explicit
Inst. Abs.
Inst. Rel.

Inst. Rel.+Abs.

Fig. 4. Number of lines of the MDP

MDP file, and in the case where both relative and absolute compactions are
considered, the number of lines grows less than linearly on the value of the
deadline.

The experimental results concerning the verification with Prism are shown
in Table 2. The left-most column shows the deadline used in the property, and
the right-most column shows the minimum probability with which the system
has reached a state where a leader is elected before the deadline. The results
reflect the obvious fact that increasing the deadline increases the probability
of a leader being elected. Notice that the same probability is computed for
deadlines of more than 40µs, meaning that the iterative method has converged,
i.e. that the actual probabilities differ by less than ε = 10−6.

The remaining columns give information on the time performance of Prism

in seconds, to build the model (columns labelled model) and to compute the
probability (columns labelled verif), using the explicit encoding and the in-
stances encoding with relative compaction (inst+rel) and with relative and
absolute compaction (inst+rel+abs) .

118

Daws, Kwiatkowska, Norman

Table 2
Time performances for model building and verification

deadline explicit inst+rel inst+rel+abs probability

(µs) model (s) verif (s) model (s) verif (s) model (s) verif (s)

4 0.626 0.009 0.061 0.006 0.054 0.007 0.625

6 1.588 0.013 0.111 0.007 0.073 0.008 0.851562

8 5.654 0.018 0.195 0.008 0.140 0.008 0.939453

10 13.338 0.029 0.301 0.009 0.196 0.010 0.974731

20 190.971 0.098 3.038 0.025 1.303 0.026 0.999629

30 1037.892 0.309 14.672 0.056 4.969 0.058 0.999993

40 – – 344.251 0.134 30.147 0.112 0.999998

50 – – 1119.008 0.349 50.129 0.204 0.999998

60 – – 3468.310 0.442 233.272 0.351 0.999998

80 – – – – 814.035 0.729 0.999998

100 – – – – 2861.889 1.744 0.999998

0

500

1000

1500

2000

2500

3000

3500

20 40 60 80 100

T
im

e
(s

)

Deadline (micro seconds)

Explicit
Inst. Rel.

Inst. Rel.+Abs.

Fig. 5. Time to build the model

Compared to the previous attempt of verification [15] of the root contention
protocol using HyTech [10], the generation of the reachability graph is no
longer a problem, since it only took about 20 seconds to generate it for a
deadline of 100µs, whilst it took approximately 24 hours to generate it with
HyTech for a deadline of 6µs. Moreover, model checking of the probabilistic
property took less than two seconds in the worst case. It is clear from this
results that the bottleneck of this verification approach is now the model
building phase of Prism, and the practical success of our verification approach
depends on improving either the encoding or the model building algorithms.

Figure 5 shows the evolution of the time needed to build the model for
different deadlines using different encodings. We can see that, although com-
pactions improve the time needed to build the model, the latter still grows
drastically with the value of the deadline, even when the size of the input file

119

Daws, Kwiatkowska, Norman

Table 3
Probability of leader election with a biased coin.

fast slow D = 6µs D = 10µs

.01 .99 0.039211 0.076886

.10 .90 0.330534 0.551770

.20 .80 0.554516 0.801000

.30 .70 0.704352 0.910950

.40 .60 0.799150 0.957090

.45 .55 0.830027 0.968230

.50 .50 0.851562 0.974731

.55 .45 0.864616 0.977771

.60 .40 0.869498 0.977795

.65 .35 0.865609 0.974558

.70 .30 0.850898 0.966919

.80 .20 0.768942 0.923030

.90 .10 0.544273 0.746829

.99 .01 0.076872 0.130600

grows linearly, because of the complexity of the guards after compaction.

5.4 RCP with a biased coin

We now study the influence of using a biased coin on the performance of the
protocol. As noted in [21], a curious property of the protocol is that the
probability for electing a leader before a deadline can be slightly increased if
the probability to choose fast timing increases for both nodes. This is because,
although the protocol will require more rounds to elect a leader, the time per
round is lower when both processes select fast timing.

Table 3 gives the probability for electing a leader before 6µs or 10µs, for
different values of the probability of choosing fast or slow timing for both
nodes. The results presented correspond to model checking the same property
as before using the optimized instances encoding. Note that we don’t need to
compute the forward reachability for each case. Instead, since probabilities for
choosing a fast or slow timings can be given as parameters in Prism description
language, the same input file is used to perform probabilistic model checking,
and only the actual values of the probabilities change.

6 Conclusions

We have presented an approach to the automatic verification of soft deadlines
for timed probabilistic systems modelled as probabilistic timed automata. We
use Kronos to generate the probabilistic reachability graph with respect to
the deadline and encode it in the Prism input language. A probabilistic reach-
ability property is then verified with Prism. We have successfully applied this

120

Daws, Kwiatkowska, Norman

verification technique to the timed and probabilistic root contention protocol
of the IEEE 1394. We have computed the minimal probability of electing a
leader before different deadlines, and studied the influence of using a biased
coin on this minimal probability.

The main obstacle we had to face was the encoding of the reachability
graph in the Prism input language. The model checking algorithms of Prism

are based on (MT)BDDs, so its input needs to be specified in a compact and
structured manner. An explicit encoding of the reachability graph using a sin-
gle variable to encode a state turned out to be infeasible even for small values
of the deadline. The instances encoding using two variables, one correspond-
ing to the location of the timed automaton, the other to the instance of this
location in the reachability graph, allowed us to apply compaction techniques
that helped overcoming this problem. However, it is not clear how general a
solution this is. Finding a good encoding is then crucial.

Naturally, we need to validate this approach by applying it to other systems
or protocols where timing and probabilistic aspects arise. In order to do this,
a better integration of both tools is needed. A first step in this direction would
be to implement the parallel composition of probabilistic timed automata so
that we are able to model complex systems in a compositional way.

Acknowledgement

We thank Sergio Yovine for making Kronos’ libraries available to us.

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time.
Information and Computation, 104(1):2–34, 1993.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[3] R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System
Design, 15(1):7–48, 1999.

[4] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking
continuous-time Markov chains by transient analysis. In Proc. CAV’00, LNCS,
2000.

[5] C. Baier and M. Z. Kwiatkowska. Model checking for a probabilistic branching
time logic with fairness. Distributed Computing, 11(3):125–155, 1998.

[6] A. Bianco and L. de Alfaro. Model checking of probabilistic and
nondeterministic systems. In P. S. Thiagarajan, editor, Proceedings of
FSTTCS’95, volume 1026 of LNCS, pages 499–513. Springer-Verlag, 1995.

121

Daws, Kwiatkowska, Norman

[7] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In R. Alur,
T. A. Henzinger, and E. D. Sontag, editors, Hybrid Systems III, volume 1066
of Lecture Notes in Computer Science, pages 208–219. Springer-Verlag, 1996.

[8] C. Daws and S. Tripakis. Model–checking of real–time reachability properties
using abstractions. In B. Steffen, editor, Proc. TACAS’98, volume 1384 of
LNCS, pages 313–329. Springer-Verlag, 1998.

[9] L. de Alfaro. Computing minimum and maximum reachability times in
probabilistic systems. In J. Baeten and S. Mauw, editors, Proceedings of
CONCUR’99, volume 1664 of LNCS, pages 66–81. Springer Verlag, 1999.

[10] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: a model checker for
hybrid systems. Software Tools for Technology Transfer, 1(1+2):110–122, 1997.

[11] J. G. Kemeny, J. L. Snell, and A. W. Knapp. Denumerable Markov Chains.
Graduate Texts in Mathematics. Springer, 2nd edition, 1976.

[12] KRONOS web page. http://www-verimag.imag.fr/TEMPORISE/kronos/.

[13] M. Kwiatkowska, G. Norman, and D. Parker. PRISM: Probabilistic symbolic
model checker. In J. B. T. Field, P. Harrison and U. Harder, editors, Proc.
TOOLS 2002, volume 2324 of LNCS, pages 200–204. Springer, 2002.

[14] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model
checking with PRISM: A hybrid approach. In J.-P. Katoen and P. Stevens,
editors, Proc. TACAS 2002, volume 2280 of LNCS, pages 52–66. Springer, 2002.

[15] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking
of deadline properties in the IEEE 1394 firewire root contention protocol. In
Proc. Int. Workshop on Application of Formal Methods to IEEE 1394 Standard,
2001.

[16] M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic
verification of real-time systems with discrete probability distributions. volume
1601 of LNCS, pages 75–95. Springer-Verlag, 1999.

[17] M. Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic
verification of real-time systems with discrete probability distributions.
Theoretical Computer Science, 286, 2002. To appear.

[18] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Software Tools
for Technology Transfer, 1(1+2):134–152, 1997.

[19] PRISM web page. http://www.cs.bham.ac.uk/~dxp/prism/.

[20] D. Simons and M. Stoelinga. Mechanical verification of the IEEE 1394a root
contention protocol using Uppaal2k. Springer International Journal of Software
Tools for Technology Transfer, 2001. To appear.

[21] M. Stoelinga. Alea jacta est: verification of probabilistic, real-time and
parametric systems. PhD thesis, Univerisity of Nijmegen, 2002.

[22] M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In Proceedings FOCS’85. IEEE Computer Society Press, 1985.

122

Wang Yi (Uppsala University, Sweden)

Synthesis of Verified Real Time Software

In this talk. I will present a unified model for timed systems to bridge scheduling,
model checking and code synthesis. The technical contributions include a general
notion of schedulability for automata and efficient algorithms for schedulability
checking. TIMES is a tool developed based on these recent results and our past
experience in developing the UPPAAL tool. It is designed for synthesis of verified
software guaranteeing timing constraints. This talk will review recent development on
TIMES and published results from papers.

References

Elena Fersman, Paul Pettersson, and Wang Yi. Timed Automata with Asynchronous
Processes: Schedulability and Decidability. Proceedings of TACAS 2002, LNCS 2280,
pages 67-82

Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi.
Times - A Tool for Modelling and Implementation of Embedded Systems. Proceedings
of TACAS 2002, LNCS 2280, pages 460-464.

 123

 124

Valero, Pelayo, Cuartero, Cazorla

Specification and Analysis of the MPEG–2
Video Encoder with Timed-Arc Petri Nets 1

Valent́ın Valero 2 Fernando L. Pelayo 3 Fernando Cuartero 4

Diego Cazorla 5

Departamento de Informática
Universidad de Castilla-La Mancha

Escuela Politécnica Superior de Albacete. 02071 - SPAIN

Abstract

Petri nets are a very suitable model for the description and analysis of concurrent
systems. Several timed extensions of Petri nets have been defined to capture some
additional aspects, concerning with the behaviour in time of the described systems.
In this paper we illustrate the use of timed-arc Petri nets for the modelling of timed
concurrent systems, using the MPEG–2 video encoder as an example. From the
analysis of the model we conclude that the performance of the encoding process
could be improved by introducing some minor changes on the encoder.

1 Introduction

Petri nets are a very suitable model for the description and analysis of concur-
rent systems. They have a graphical nature and they have a solid mathemat-
ical foundation supporting them. Furthermore, one of the main advantages of
Petri nets is that they capture true concurrency , i.e., they are able to model
the simultaneous execution of actions in the system. A Petri net consists of
a set of places and transitions, as well as a set of arcs connecting places with
transitions and transitions with places. Places and transitions are called the
nodes of the net; then, when there is an arc connecting a pair of nodes (x, y),
we say that x is a precondition of y and y is a postcondition of x. In order to
capture the dynamic behaviour of the modelled system places are annotated

1 This work has been supported by the CICYT project “Performance Evaluation of Dis-
tributed Systems”,TIC2000-0701-C02-02.
2 Email:valentin@info-ab.uclm.es
3 Email:fpelayo@info-ab.uclm.es
4 Email:fernando@info-ab.uclm.es
5 Email:dcazorla@info-ab.uclm.es

c©2002 Published by Elsevier Science B. V.

Valero, Pelayo, Cuartero, Cazorla

with a number of tokens . Thus, markings are defined as functions from P to
N , where P is the set of places of the net.

However, Petri nets do not consider quantitative aspects in the specifica-
tions, like the time required for the execution of transitions. Then, in the last
three decades, some effort has been made in order to include time in Petri nets.
A survey of the different approaches to introduce time in Petri nets is pre-
sented in [5]. The first group of models assign time delays to transitions, either
using a fixed and deterministic value [11,12] or choosing it from a probability
distribution [3]. Other models use time intervals to establish the enabling
times of transitions [10]. Some models introduce time on tokens [2,4,13]; here,
tokens become classified into two different classes: available and unavailable
ones. Available tokens are those that can be immediately used for firing a
transition, while unavailable cannot. Occurrence of a transition has to wait
for a certain period of time for these tokens to become available, although it
is also possible for a token to remain unavailable forever (such tokens are said
to be dead). More recently, Cerone and Maggiolo-Schettini [6] have defined a
very general model (statically timed Petri nets), where timing constraints are
intervals statically associated with places, transitions and arcs. Thus, models
with timing constraints attached only to places, transitions or arcs can be
obtained by considering particular subclasses of this general framework.

Timed-Arc Petri nets (TAPNs) [1,4,7,8,13] are a timed extension of Petri
nets in which tokens have associated a non-negative real value indicating the
elapsed time from its creation (its age), and arcs from places to transitions
are also labelled by time intervals, which establish restrictions on the age of
the tokens that can be used to fire the adjacent transitions. As a consequence
of these restrictions some tokens may become dead , in the sense that they will
never be available, since they are too old to fire any transitions in the future.
The interpretation and use of Timed-Arc Petri nets can be obtained from a
collection of processes interacting with one another according to a rendez-vous
mechanism. Each process may execute either local actions or synchronization
ones. Local actions are those that the process may execute without coopera-
tion from another process, and thus in the Petri net model of the whole system
they would appear as transitions with a single precondition place, while syn-
chronization actions would have several precondition places, which correspond
to the states at which every involved processes is ready to execute the action.
Then, each time interval establishes some timing restrictions related to a par-
ticular process (for instance the time that a local processing may require).
In consequence, the firing of a synchronization action can be done in a time
window which depends on the age of the tokens on its precondition places.

Therefore, Timed-Arc Petri nets are a very appropriate model for the de-
scription of concurrent systems with time restrictions, such as manufacturing
systems, real-time systems, process control and workflow systems. In this pa-
per we show the use of TAPNs for the modelling of concurrent systems. As
an illustration, we model the MPEG–2 Video Encoder by using TAPNs. The

126

Valero, Pelayo, Cuartero, Cazorla

ISO/IEC 13818–2 standard [9], commonly known as MPEG–2, is a standard
intended for a wide range of applications, including Video–on–Demand (VoD),
High Definition TV (HDTV) and video communications using broadband net-
works. The MPEG standards were designed with these two requirements:

• The need for a high compression, which is achieved by exploiting both
spatial and temporal redundancies within an image sequence.

• The need for random access capability, which is obtained by considering a
special kind of pictures (I pictures), which are encoded with no reference to
other frames, only exploiting the spatial correlation in a frame.

Then, we have modelled this encoding algorithm with TAPNs, and from
the analysis of the model we have concluded that a better performance could
be obtained in the encoding process by introducing some minor changes into
the encoder. Specifically, we have computed some bounds for the time required
to encode each type of image of a video sequence, and we have concluded that
some improvements can be introduced in the encoding process of the B-images.

The paper is structured as follows. In Section 2 we present Timed-Arc
Petri nets and their semantics, in Section 3 we describe the MPEG–2 encoding
algorithm and the corresponding TAPN that models it. Finally, the analysis
of the algorithm and some conclusions are presented in Section 4.

2 Timed-Arc Petri Nets

We deal with timed-arc Petri nets, which have their tokens annotated with
an age (a real value indicating the elapsed time from its creation) and arcs
connecting places with transitions have a time interval associated with them.
The interval limits the age of the tokens that are needed to fire the adjacent
transition.

However, a transition is not forced to be fired when all its preconditions
contain tokens with an adequate age, and the same is true even if these tokens
are about to become too old for any transition to consume. More generally,
in the model we consider 6 there is not any kind of urgency, what we can
interpret in the sense that the model is reactive, as transitions will be only
fired when the external context requires it. But then, it can be the case that
the external context may lose the ability to fire a transition if some needed
tokens become too old. Furthermore, it is possible that some tokens become
dead , that is definitely useless because their increasing age will not allow the
firing of any of their postcondition transitions in the future.

6 Other proposals of timed-arc Petri nets [8] enforce the firing of transitions with an earliest
and maximal firing rule.

127

Valero, Pelayo, Cuartero, Cazorla

Definition 2.1 Timed-arc Petri nets
We define a Timed-Arc Petri net (TAPN) as a tuple 7 N = (P, T, F, times),
where P is a finite set of places, T is a finite set of transitions (P ∩ T = ∅),
F is the flow relation , F ⊆ (P × T) ∪ (T × P), and times is a function that
associates a closed time interval to each arc (p, t) in F , i.e.:

times : F ∩ (P × T) −→ R
+
0 × (R+

0 ∪ {∞})

When times(p, t) = (x1, x2) we write πi(p, t) to denote xi, for i = 1, 2. We
will also say that x ∈ times (p, t) if and only if times(p, t) = (x1, x2) and
x1 ≤ x ≤ x2.

As we previously mentioned, tokens are annotated with real values, so
markings are defined by means of multisets over R

+
0 . More exactly, a marking

M is a function:

M : P −→ B(R+
0)

where B(R+
0) denotes the set of finite multisets (bags) of non-negative real

numbers 8 . Thus, as usual, each place is annotated with a certain number of
tokens, but each one of them has an associated non-negative real number (its
age). We will denote the set of markings of N by M(N), and using classical
set notation, we will denote the number of tokens on a place p at a marking
M by |M(p)|.

As initial markings we only allow markings M such that for all p in P , and
any x > 0 we have M(p)(x) = 0 (i.e., the initial age of any token is 0). Then,
we define marked Timed-Arc Petri nets (MTAPN) as pairs (N, M), where N is
a Timed-Arc Petri net, and M is an initial marking on it. As usual, from this
initial marking we will obtain new markings, as the net evolves, either by firing
transitions, or by time elapsing. In consequence, given a non-zero marking,
even if we do not fire any transitions at all, starting from this marking we get
an infinite reachability set of markings, due to the token aging.

A Timed-Arc Petri net with an arbitrary marking can be graphically rep-
resented by extending the usual representation of P/T nets with the corre-
sponding time information. In particular we will use the age of each token
to represent it. Therefore, MTAPNs have initially a finite collection of zero
values labelling each place.

In Fig. 1 we show a MTAPN modelling a producer/consumer system, where
we have represented by transition t1 the action corresponding to the manu-
facturing process of the producer, which takes between 5 and 9 units of time,
and by t2 the action of including the generated object into the buffer. Notice
that the initial tokens on p5 represent the capacity of the buffer (3), and the

7 We consider only arcs with weight 1 to simplify some definitions, but the extension to
general arcs with greater weights is straightforward.
8 Using classical notation, we consider that a multiset B over a set X is defined as a
function B : X → N.

128

Valero, Pelayo, Cuartero, Cazorla

��
��

��
��

��
��

��
��

��
��

��
��

�

�

�

�

�

�

�
�

�
�

�
�

�
�

���

����
�

�
�

�
�

�
��

��������

				

��..........
..........

��

..........................
.........
..

.................
......�

t1

t2

t3

t4

p1

p2

p3

p4

p5

p6

0
0, 0,

0 0

< 0,∞ >
< 0,∞ >

< 0,∞ >

< 4, 6 >

< 5, 9 >

< 0,∞ >

Fig. 1. Timed-Arc Petri net modelling a producer-consumer problem

arc connecting this place with t2 is labelled by the interval < 0,∞ >, because
these tokens can be consumed at any instant in the future. Tokens on p6

represent the objects on the buffer which have not been yet consumed. Tran-
sition t3 models the action of taking out an object from the buffer, which can
occur at any instant. Finally, transition t4 models the processing that makes
the consumer for the objects extracted from the buffer, and this action takes
between 4 and 6 units of time.

Let us observe that if the enabling time for the firing of one of these tran-
sitions (t1 or t4) expires, the system eventually becomes deadlocked, because
we obtain a dead token either on p1 or p4.

Let us now see how we can fire transitions, and how we model the time
elapsing.

Definition 2.2 Firing rule
Let N = (P, T, F, times) be a TAPN, M a marking on it, and t ∈ T .

(i) We say that t is enabled at the marking M if and only if: ∀p ∈ •t ∃xp ∈
R

+
0 such that M(p)(xp) > 0 ∧ xp ∈ times(p, t), i.e., on each precondition

of t the marking has some token the age of which belongs to times(p, t).

(ii) If t is enabled at M , it can be fired, and by its firing we reach a marking
M ′, defined for each place p as follows:

M ′(p) = M(p) − C−(p, t) + C+(t, p)

where both the subtraction and the addition operators work on multisets,
and:

• C−(p, t) =




{xp} if p ∈ •t, xp ∈ times(p, t) and xp ∈ M(p)

∅ otherwise

• C+(t, p) =




∅ if p
∈ t•

{0} otherwise

Thus, from each precondition place of t we remove a token fulfilling (i),
and we add a new token with age 0 on each postcondition place of t.

129

Valero, Pelayo, Cuartero, Cazorla

As usual, we denote these evolutions by M [t〉M ′ , but it is noteworthy
that these evolutions are in general non-deterministic, because when we
fire a transition t, some of its precondition places could hold several tokens
with different ages that could be used to fire it. Besides, we see that the
firing of transitions does not consume any time. Therefore, in order to
model the time elapsing we need the function age, defined below. By
applying it, we age all the tokens of the net by the same time:

(iii) The function age : M(N) × R
+
0 −→ M(N) is defined by:

∀M ∈ M(N),∀x, y ∈ R
+
0 ,∀p ∈ P :

age(M, x)(p)(y) =




M(p)(y − x) if y ≥ x

0 otherwise

The marking obtained from M after x units of time without firing any
transitions will be that given by age(M, x).

Although we have defined the evolution by firing single transitions, this can
be easily extended to the firing of steps or bags of transitions; those transitions
that could be fired together in a single step could be also fired in sequence in
any order, since no aging is produced by the firing of transitions. In this way
we obtain step transitions that we denote by M [R〉M ′. Finally, by alternating
step transitions and time elapsing we can define a timed step semantics, where
timed step sequences are those sequences σ = M0[R1〉x1M1 . . . Mn−1[Rn〉xnMn,
where Mi are markings, Ri multisets of transitions and xi ∈ R

+
0 , in such a way

that Mi[Ri+1〉M ′
i+1 and Mi+1 = age(M ′

i+1, xi+1). Note that we allow all the
xi be 0 in order to capture the execution in time zero of two causally related
steps.

Then, given a MTAPN (N, M0), we define [M0〉 as the set of reachable
markings on N starting from M0, and we say that N is bounded if for every
p ∈ P there exists n ∈ N such that for all M ∈ [M0〉 we have |M(p)| ≤ n.

In a previous paper [13] we have shown that TAPNs have a greater expres-
siveness than PNs, even although TAPNs are not Turing complete, because
they cannot correctly simulate a 2-counter machine. In that paper we proved
that reachability is undecidable for TAPNs. Other properties that we have
studied in a more recent paper [7] are coverability, boundedness and detection
of dead tokens, which are all decidable for TAPNs. Decidability of coverability
has been also proved in [1] for an extended version of TAPNs, in which all
arcs can be annotated with bags of intervals in N × N ∪ {∞}.

3 MPEG–2 Encoding Algorithm

MPEG standards were designed with two requirements in mind, namely, the
need for a high compression, and the need for random access capability. These
techniques exploit the fact that video sequences usually contain statistical re-

130

Valero, Pelayo, Cuartero, Cazorla

dundancies in both temporal and spatial directions. Thus, MPEG digital
video coding techniques are statistical in nature. Specifically, the basic sta-
tistical property upon which MPEG compression techniques rely is inter-pixel
region correlation. The contents of a particular pixel region can be predicted
from nearby pixel regions within the same frame (intra-frame coding) or from
pixel regions of a nearby frame (inter-frame coding).

Perhaps the ideal method for reducing temporal redundancies is one that
tracks every pixel from frame to frame. However, this extensive search is com-
putationally expensive. Under the MPEG standards, this search is performed
by tracking the information within 16× 16 pixels regions, called macroblocks.
Given two contiguous frames, frame(t) and frame(t − 1), for each mac-
roblock in frame(t), the encoder determines the best matching macroblock
in frame(t − 1) and calculates the motion vector, which captures the mac-
roblock translation information. Therefore, the temporal redundancy reduction
processor generates a representation for frame(t) by using the corresponding
macroblock from frame(t− 1), and this representation only contains the mo-
tion vector and the prediction error (changes between both frames). This
technique is called motion compensated prediction.

In order to reduce spatial redundancies a DCT (Discrete Cosine Transform)
is used. With this coding process some subjective redundancies in the image
are removed, on the basis of human visual criteria.

The combination of these two techniques described above are the key ele-
ments of the MPEG encoding process. Furthermore, in order to achieve the
requirement of random access and high compression, the MPEG–2 standard
specifies three types of compressed video frames: I pictures, P pictures and
B pictures. I pictures (intracoded pictures) are coded with no reference to
other frames, exploiting only spatial correlation in a frame. P pictures (pre-
dictive coded pictures) are coded by using motion compensated prediction of
a previous I or P picture. Finally, B pictures (bidirectionally–predictive coded
pictures) are obtained by motion compensation by using past and future ref-
erence frames (I or P pictures).

A group of consecutive I, P and B pictures constitute a structure called
Group of Pictures (GoP). Therefore, a video sequence may be seen as a se-
quence of GoPs.

The block diagram of the MPEG encoder is depicted in Figure 2. In order
to understand how the MPEG–2 encoder works, we will consider a typical
GoP consisting on the frames IBBP. Despite the B pictures appearing before
the P picture, the encoding order is IPBB because B pictures require both
past and future frames as references.

The first frame in a GoP (I picture) is encoded in intra mode without ref-
erences to any past or future frames. The DCT is applied to each macroblock
and then it is uniformly quantized (Q). After quantization, it is encoded using
a variable length code (VLC) and it is sent to the output buffer. At the same
time the reconstruction (IQ) of all non-zero DCT coefficients belonging to one

131

Valero, Pelayo, Cuartero, Cazorla

Blocks
Image

vectors

ERROR
+

Motion
Compensation

Motion
Estimation

DCT/Q

IQ/IDCT

FS

VLC

Motion

bitstream

Fig. 2. Block diagram of the MPEG–2

macroblock and the Inverse DCT (IDCT) give us a compressed I picture which
is stored temporarily in the Frame Store (FS).

When the input is coded either as P or B pictures, the encoder does not
code the picture macroblocks directly. Instead, it codes the prediction errors
and the motion vectors. With P pictures, for each macroblock in the current
picture, the motion estimation gives us the coordinates of the macroblock in
the I picture that best matches its characteristics and thus, the motion vector
may be calculated. The motion compensated prediction error is obtained by
subtracting each pixel in a macroblock with its motion shifted counterpart in
the previous frame. The prediction error and the motion vectors are coded
(VLC) and sent to the output buffer. As in the previous case, a compressed
P picture is stored in the Frame Store.

With B pictures, the motion estimation process is performed twice: for
a past picture (I picture in this case), and for a future picture (P picture).
Prediction errors and both motion vectors for each macroblock are coded
(VLC) and sent to the output buffer. Notice that the compressed B pictures
are not stored in the Frame Store, since they are not needed to calculate any
other pictures.

3.1 Timed-Arc Petri Net modelling the MPEG–2

Figure 3 shows the Timed-Arc Petri net modelling the MPEG–2 encoding
algorithm 9 . The left side figure describes the first part of the encoding algo-
rithm, which corresponds to the generation of both I and P encoded pictures
(but remember that even if P pictures are generated before the B pictures,
they will appear the last in the final video sequence). Once the places I-B1,

9 For simplicity, we omit in this picture the label of the arcs when they are labelled by
<0,∞>.

132

Valero, Pelayo, Cuartero, Cazorla

0

DCT_Q I

IQ_IDCTI VLC I

FS I

Iout

I

Perror P

ESTP

COMPP

I−B1 I−B2

0 0

ERROR

DCT_Q

VLC PIQ_IDCT

POUT

OUTI

P

FSP

Pout

P−B1 P−B2

<595,595>

<298,358><673,673>

<0,0> <0,0>

<1180,1181>

<32,32>

<0,0>

<521,521>

<515,515> <378,389>

<0,0> <0,0>

MV−P

ERRORB1

P−B1

B1COMP

ESTB1

I−B1 B1 B1error

DCT_Q

VLCB1

OUTB1

B1out

P−B2 I−B2B2B2error

DCT_Q

ESTB2

COMPB2

ERROR B2

VLC B2

OUTB2

B2out

0 00 0

<2399,2400> <2418,2422>

<0,0>

<48,48>

<189,454>

<0,0> <0,0>

<189,454>

<521,521><521,521>

<0,0>

<48,48>

MV−B1 MV−B2

Fig. 3. TAPN modelling the MPEG–2

I-B2, P-B1, P-B2 are marked the second part of the net becomes activated
(right part figure, where these places have been pictured again in that figure
for a better readability), which models the B1 and B2 picture encoding pro-
cess. Iout (respectively, Pout) represents the output of an encoded I picture
(P picture), while places B1out and B2out represent the output of B1 and
B2 pictures.

The time intervals that label the arcs connecting places with transitions
have been obtained from several real measurements, by coding the so called

133

Valero, Pelayo, Cuartero, Cazorla

“Composed” video sequence. This experiment has been repeated a number of
times, and the results being reported below are the minimum and the maxi-
mum of all these trials 10 . During these trials, no other operations were taking
place in our experimental setup. The “Composed” video sequence (format
PAL CCIR601, 720x576 pixels) is a representative video sequence which has
several different motion levels, and we have encoded it by using a completely
software-based MPEG–2 video encoder derived from that developed in Berke-
ley, which is freely available in the MPEG Home Page: http://www.mpeg.org.

In order to get the real values for the different elements of the encoder we
have included some patches into the source code, which correspond with the
beginning and the end of the elementary actions that we have described in
the specification of the algorithm.

The real values thus obtained for I and P pictures reaching the output
buffer are shown in Table 1 (measured values), as well as the times for encoding
the complete GoP.

Table 1
Times for encoding the pictures

Measured TAPN

Picture Min Max Min Max

I 893 ms 953 ms 893ms 953 ms

P 3688 ms 3738ms 3379ms 3391ms

GoP 11567 ms 12085 ms 6673ms 6962ms

4 Analysis and Conclusions

We may compute the times to reach every place of a TAPN, by constructing a
state reachability graph. This graph can be constructed for bounded Timed-
Arc Petri nets (see [13] for a detailed description); this construction is based
on the fact that for every place p of a Timed-Arc Petri net we can find a
maximal value Max (p) for the age of its tokens to influence the activation of
its postcondition transitions, because the tokens on that place with an age
exceeding that maximal value can only be consumed by the firing of some
transition t ∈ p• for which π2(p, t) = ∞.

Concretely, we may define:

Max (p) = Max{πi(p, t) | t ∈ p•, πi(p, t) < ∞, i = 1, 2}
Obviously, in order to fire such a transition t the age of the involved token on p
is unimportant once it exceeds Max (p). This means that in order to construct

10 These values were obtained in a Pentium II - 350MHz platform with 64MB RAM.

134

Valero, Pelayo, Cuartero, Cazorla

the state graph we can represent by the single value 1 + Max (p) the whole
interval [1 + Max (p),∞].

In our case, with that state graph we may obtain a time interval for reach-
ing every place of the TAPN, concretely we have obtained the results shown in
the last two columns of Table 1 (TAPN values). Notice that the time required
to reach the place Iout (respectively, Pout) is the time required to generate
the I (respectively, P) picture. Furthermore, the time required for encoding
the complete GoP is the time required to reach both places B1out and B2out.

We can observe that the most significant differences with the measured
values appear in the times obtained for completing the GoP encoding. These
differences are due to the important fact that the encoder only uses a single
processor, whereas our TAPN model captures all the intrinsic parallelism of
the encoding process, so that with the analysis of the TAPN we are obtaining
the required times provided that we have as many processors as needed to take
advantage of this parallelism. In our case two processors would be enough.

Consequently, the main conclusion of this analysis of the MPEG–2 encoder
by using TAPNs is that the performance of the encoding algorithm can be
improved by a factor of nearly 50% by using two processors. Moreover, in
bigger GoPs this improvement factor increases a little more, since the major
cost of the encoding process is due to the B-images, which can be encoded in
parallel.

Acknowledgement

The authors would like to thank the reviewers for their comments and
suggestions, which have helped to improve this paper significantly.

References

[1] P.A. Abdulla and A. Nylén. Timed Petri Nets and BQOs. In Proc. ICATPN
2001, Lecture Notes in Computer Science, vol. 2075(2001), pp. 53–70.

[2] W.M.P. van der Aalst. Interval Timed Coloured Petri Nets and their
Analysis. Lecture Notes in Computer Science, vol. 691 (1993), pp. 451–
472.

[3] M. Ajmone Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte and A.
Cumani. On Petri Nets with Stochastic Timing. Proc. of the International
Workshop on Timed Petri Nets, IEEE Computer Society Press, pp. 80–87.
1985.

[4] T. Bolognesi, F. Lucidi and S. Trigila. From Timed Petri Nets to Timed
LOTOS. Proc. of the Tenth International IFIP WG6.1 Symp. on Protocol
Specification, Testing and Verification. 1990.

[5] Fred D.J. Bowden. Modelling time in Petri nets. Proc. Second Australia-
Japan Workshop on Stochastic Models. 1996.

135

Valero, Pelayo, Cuartero, Cazorla

[6] Antonio Cerone and Andrea Maggiolo-Schettini. Time-based expressivity
of time Petri nets for system specification. Theoretical Computer Science,
vol. 216(1999), pp. 1-53.

[7] D. de Frutos, V. Valero and O. Marroqúın. Decidability of Properties of
Timed-Arc Petri Nets. Proc. ICATPN 2000, Lecture Notes in Computer
Science, vol. 1825 (2000), pp. 187–206.

[8] Hans-Michael Hanisch. Analysis of Place/Transition Nets with Timed-Arcs
and its Application to Batch Process Control. Application and Theory of
Petri Nets, LNCS vol. 691 (1993), pp:282–299.

[9] ISO/IEC 13818-2. Draft International Standard Generic Coding of Moving
Pictures and Associated Audio. Recommendation H.262.

[10] P. Merlin. “A Study of the Recoverability of Communication Protocols”.
PhD. Thesis, Univ. of California. 1974.

[11] C. Ramchandani. “Performance Evaluation of Asynchronous Concurrent
Systems by Timed Petri Nets”. PhD. Thesis, Massachusetts Institute of
Technology, Cambridge. 1973.

[12] J. Sifakis. Use of Petri Nets for Performance Evaluation. Proc. of the
Third International Symposium IFIP W.G.7.3., Measuring, Modelling and
Evaluating Computer Systems. Elsevier Science Publishers, pp. 75–93.
1977.

[13] V. Valero, D. de Frutos and F. Cuartero. On Non-decidability of
Reachability for Timed-Arc Petri Nets. Proc. 8th Workshop on Petri Nets
and Performance Models, PNPM’99, pp. 188–196. 1999.

136

Boldo,Daumas

Properties of the subtraction valid for
any floating point system

Sylvie Boldo and Marc Daumas

Laboratoire de l’Informatique du Paralllisme
UMR 5668 - CNRS - ENS de Lyon - INRIA

1 Introduction

In 1974, Sterbenz [20] presented a theorem about the exact subtraction of two
floating point numbers x and y when they are very close one from another,
that is

y

2
≤ x ≤ 2y.

The theorem stating that x−y is exact under the preceding condition was
presented for any radix provided the hardware was accurate enough. More
recently, other authors [8,10] presented similar results with an emphasis on
didactic aspects.

We have recognized in [6] that Sterbenz’s theorem is not a property of
the computing hardware but rather a property of the floating point number
representation. Given x and y, the question is to know whether or not x − y
can be represented in the working floating point system. This is clearly the
key necessary condition for the implemented floating point subtraction x � y
to return the exact result x − y.

With IEEE-like behavior, any floating point operation is cut down to two
steps. An intermediate result is first computed to sufficient accuracy and then
rounded. The designer must guarantee that the system always returns the
result as if the infinitely precise mathematical operation were rounded. For
example the subtraction is implemented as the composition of two mathemat-
ical functions, namely, the subtraction (−) and the user specified rounding
function (◦)

x � y = ◦(x − y).

The details of the implementation are not relevant to the user since know-
ing the rounding function is sufficient to deduce the value returned by any
operation. Users usually expect the rounding function to be a monotonous
(non decreasing) projection of the real numbers over the set of the machine
floating point numbers. The later property implies that for any floating point
number v,

◦(v) = v.

c©2002 Published by Elsevier Science B. V.

Boldo,Daumas

Establishing Sterbenz’s equality does not require any additional knowledge on
the rounding function provided it is a projection.

In Section 2, we describe more precisely our formalization of the floating-
point system. In Section 3 we discuss key properties of this system. The
proposed representation is very redundant but we will see that any machine
number has one single canonical representation that can be used in hardware.
We will quickly present that a floating point system must handle denormal
numbers in order to verify Sterbenz’s theorem on very small numbers. Finally
as the existence of a negation will become key to Sterbenz’s theorem, we will
present a strong necessary and sufficient condition for a generic number system
to be stable by negation.

Section 4 presents our results about Sterbenz’s theorem and relates them
to real hardware implementations. We have focused on IEEE 754 standard
implementations and on Texas Instrument TMS 320C3x series described in
Section 5 with its SMJ military grade processes. The SMJ 320C3x circuits can
be used in avionics and military applications such as the flight control primary
or secondary computer (FCPC / FCSC) [14]. Past studies have proved that
an automatic proof checker must be used for such critical systems [16]. This
work ends with concluding remarks and perspectives for further developments.

2 Our formalization of a floating point system

All the results have been developed and validated using Coq [11]. It is a
theorem checking system based on the Curry-Howard isomorphism. Systems
like Coq allow the user to define new objects and to derive consequences of
these definitions formally while checking every detail. The Coq tool is based
on higher-order logic. With such an expressive logic, it is possible to state
properties in their most general form. For example, universal quantification
has been used to state properties that are true for an arbitrary rounding mode.
Theorem provers have already been successfully used to mechanically check
the correctness of floating-point algorithms [17,9], and with a strong emphasis
for avionics [2].

We will present in this text the behavior of a generic floating point system
in regard to Sterbenz’s theorem. We define a generic floating point system
from a mapping of Z

2 onto R

(n, e) ↪→ nβe

where β is a constant integer strictly greater than one called the radix of the
floating point system. Later n will be called the mantissa and e the amplitude.

In Coq, the set is defined by the float type defined below in ASCII

Record float : Set := Float {

Fnum: Z;

Fexp: Z }.

138

Boldo,Daumas

and its value is obtained by using the FtoR function

Definition FtoR := [x : float]

(Rmult (Fnum x) (powerRZ (IZR radix) (Fexp x))).

Two pairs are equivalent if they are mapped to the same real value. This
equality will be noted as =R. Coq files are hardly understandable for a non-
Coq user, theorems and definitions can be presented using a integrated pretty
printer. For example:

Definition 2.1 FtoR := x : float �−→ Fnum(x) × βFexp(x)

All the quantities treated by a computer system must fit into a finite field,
we focus our interest on pairs (n, e) such that n and e are bounded. For
practical reasons, we do not use an upper bound on the amplitude and a
bounded floating point pair is such that

n ∈ {−Ni, · · · , Ns} and e ≥ −Ei.

That is to say in Coq:

Definition 2.2 FboundedI := b : FboundI, d : float �−→
(−vNumInf(b) ≤ Fnum(d))

∧
(Fnum(d) ≤ vNumSup(b))∧

(−dExp(b) ≤ Fexp(d))

A sectioning mechanism with implicit parameter management transforms
Sterbenz’s theorem with our floating point library so that it states that

“for any radix greater than one, for any floating-point system, for all floats
x and y, if x and y are bounded, and if y

2
≤ x and x ≤ 2 × y then there

exists a bounded float z such that z =R x − y”.

Unfortunately, this assertion is false. For example, let the radix be two
and the format such that the mantissa is between −11002 and 11112. Let x
be (11112, 0) and y be (11102, 1). Both x and y are bounded, they are such
that y

2
≤ x ≤ 2 × y but x − y is −11012 and this value cannot be represented

exactly in this floating point system. We will later give a list of necessary
conditions for the assertion to be true.

Proofs are built interactively using high-level tactics that may solve some
of the “easy” subgoals. We used pcoq [1]: a working environment for the Coq
theorem prover with a nice graphical interface and the pretty printer.

At the end of each proof, Coq records a proof object that contains all the
details of the derivation and ensures that the theorem is valid. The object
can be double checked for life critical applications by a tool such as BindLib,
a program independent of the Coq development.

The proofs for this work can be downloaded through the Internet at the
address

http://www.ens-lyon.fr/~sboldo/coq.

139

Boldo,Daumas

They include the current development of the floating point library available
at

http://www-sop.inria.fr/lemme/AOC/.

All the following theorems have been proved using this very general formal-
ization. Unless explicitly specified the properties hold for any radix greater
than one and any bound on the mantissa and the amplitude.

3 Basic properties of the set of bounded floating point
numbers

3.1 Multiple representations

Contrary to IEEE-like behavior, the proposed library defines possibly many
bounded floating point pairs with the same value. For example, the three
radix two floating point pairs (11002, 4)2, (1102, 5)2 and (112, 6)2 share the
same real value 3 × 26 = 192. This fact can be disturbing as one real value
can be associated to many different bounded floating point pairs that do not
have the same properties.

In order to retain common floating point behavior, we define a canonical
pair for each bounded pair. This pair is meant to represent the actual fields
stored in a computer that are associated to the number. A pair is normal if it
is bounded and its amplitude cannot be reduced by multiplying the mantissa
by the radix, that is

n × β 	∈ {−Ni, · · · , Ns}.
A pair is denormal if it is bounded and the amplitude reduction is blocked
by the fact that it uses already the minimal accepted amplitude despite the
mantissa being small enough to be multiplied by the radix. That is

n × β ∈ {−Ni, · · · , Ns} and e = −Ei.

Any bounded pair is equivalent to one unique pair either normal or de-
normal. The later pair is called the canonical representation. This fact is
proved by several theorems. The first one, FcanonicIUnique states that if p
and q are two canonical floating-point numbers such that p =R q then p and
q are syntactically equal (Leibniz’s equality).

Other theorems prove the correctness of the FnormalizeI function defined
below to construct the canonical representation from any bounded represen-
tation:

Fixpoint FNIAux [v, N, q : nat] : nat := Cases q of

O => O

|(S q’) => Cases

(Zcompare (Zmult (Zpower_nat radix q’) v) (Zmult radix N)) of

INFERIEUR => q’ | EGAL => q’ | _ => (FNIAux v N q’) end

140

Boldo,Daumas

end.

Definition FNI := [q, N : nat] (pred (FNIAux q N (S (S N)))).

Definition FnormalizeI :=

[b : FboundI] [p : float]

Cases (Zcompare ZERO (Fnum p)) of

EGAL => (Float ZERO (Zopp (dExp b)))

| INFERIEUR => (Fshift radix (min

(FNI (absolu (Fnum p)) (vNumSup b))

(absolu (Zplus (Fexp p) (dExp b)))) p)

| SUPERIEUR => (Fshift radix (min

(FNI (absolu (Fnum p)) (vNumInf b))

(absolu (Zplus (Fexp p) (dExp b)))) p)

end.

Expressing that the function is correct means that (i) if p is a bounded float,
then the result FnormalizeI(p) is a bounded float (FnormalizeIBounded). It
also means that (ii) the result is canonical (FnormalizeIFcanonicI) and such
that (iii) the input pair p and the result pair are mapped to the same real value
that is to say p =R FnormalizeI(p) (FnormalizeICorrect). We omit these
proofs as they are quite cumbersome but not difficult.

3.2 Negating a number

On IEEE-like number systems, the mantissa is stored with separate sign and
magnitude, therefore Ni = Ns. This fact is not true on all floating point
systems. Some hardware designers decided to use two’s complement to store
the mantissa as this is the case for Texas Instrument TMS 320C3x [21].

A bounded floating point number p can be negated if there exists another
bounded floating point number q such that q =R −p. As we will see, almost
any number can be negated even on systems based on the TMS 320C3x digital
signal processors. The only two cases where a number cannot be negated
cause either an overflow as the opposite of the least represented number is
larger than the biggest number allowed in the number system or an underflow
as the opposite of the least represented positive normal number is larger than
the biggest negative number allowed in the number system. The second case
would not occur on systems that handle denormal numbers.

The following theorem checked with Coq (FoppBounded and FoppBoundedInv)
answers any question about negating a number. The cases study for a sys-
tem that does not handle denormal numbers and for the upper bound on the
amplitude are treated separately (FoppBoundedExp).

Theorem 3.1 On a floating point system bounded by Ni, Ns and Ei with

141

Boldo,Daumas

Ni 	= Ns, any bounded pair can be negated to a bounded float if and only if

|Ni − Ns| = 1 and β | max(Ni, Ns).

Without loss of generality, we assume that Ns > Ni. As a consequence,
any pair (n, e) with n ∈ {−Ni, · · · , Ni} can be easily negated by negating its
mantissa. The pairs (n, e) with n ∈ {Ni + 1, · · · , Ns} can only be negated by
manipulating the amplitude. Therefore, β should divide all the n ∈ {Ni +
1, · · · , Ns}. That is possible only for Ni + 1 = Ns if β divides Ns. On the
contrary, if Ns is a multiple of β and Ni = Ns − 1, any bounded pair can be
negated to find another bounded pair.

We have also proved that the negation is the only opposite on a system
that handles denormal numbers: if x ⊕ y = 0, then y is the negation of x.
Rephrasing [13] we first prove that the distance between two floating point
numbers is at least β−Ei then we conclude in the OppositeIUnique:

Theorem 3.2 On a floating point system bounded by Ni, Ns and Ei, let P
be any rounding mode and x and y be two bounded floats. If y 	=R −x and z
is a rounded result of x + y then |z| ≥ β−Ei.

3.3 Usual definitions of radix complement

Radix complement may or may not be used depending on the convention for
negative numbers defined by the author for radix β > 2. The three common
definitions are equivalent when β = 2.

The interpretation where the sign digit is −1 when β − 1 is stored in the
most significant digit leads to the bounds

Ni = βp−1 and Ns = (β − 1) · βp−1 − 1

with p bits of mantissa (p > 1). If β > 2, Ns − Ni > 1 and some bounded
pairs cannot be negated without rounding.

Some authors use the previous convention but restrict the leading digit to
0 or β − 1. In this case,

Ni = βp−1 and Ns = βp−1 − 1,

so any pair can be negated.

When the interpretation is read modulo βp and the digits are balanced
evenly with possibly an additional digit to the negative set, the bound are

Ni =

⌊
βp

2

⌋
and Ns =

⌈
βp

2

⌉
− 1.

If β is odd, the set is evenly balanced and Ni = Ns. If β is even, Ni = Ns + 1
and β divided Ni since p > 1.

142

Boldo,Daumas

As a conclusion, it seems natural to prefer a sign-magnitude or a two’s
complement notation for the mantissa. We will see in Section 5 that all the
existing implementations use one of these two classes.

3.4 Denormal numbers

The number system that we have just defined handles denormal pairs (gradual
underflow) as this helps write more robust codes [7]. Sterbenz’s theorem
cannot be true if denormal numbers are not allowed. Let λ be the lowest
positive normal number. Its value is

λ =

(⌊
Ns

β

⌋
+ 1

)
× β−Ei

and the following floating point number is

λ+ =

(⌊
Ns

β

⌋
+ 2

)
× β−Ei .

The quantities λ and λ+ verify λ+/2 ≤ λ ≤ 2λ+ and

λ+ − λ = β−Ei

that is a denormal number. This example shows that without allowing denor-
mal numbers, the subtraction of x and y under the conditions of Sterbenz’s
theorem may not be represented.

3.5 Lexicographic order

Many authors, including [3], have recognized that it is a nice feature for lex-
icographic order of the floating point pairs to coincide with the order of the
represented real values. As this fact is not necessary trivial in a generic floating
point system, we establish the two following LexicoPosCanI and LexicoCanI

theorems.

Theorem 3.3 On a floating point system bounded by Ni, Ns and Ei, for any
canonical pair (nx, ex) representing x and any bounded pair (ny, ey) represent-
ing y

0 ≤ x ≤ y implies ex ≤ ey.

Theorem 3.4 On a floating point system bounded by Ni, Ns and Ei with
|Ni −Ns| ≤ 1, for any canonical pair (nx, ex) representing x and any bounded
pair (ny, ey) representing y

|x| < |y| implies ex ≤ ey.

The difference between the preceding theorems and the usual IEEE like
situation arises from the fact that the magnitude of a floating point pair may

143

Boldo,Daumas

not be represented or may use another amplitude. We establish the following
corollary.

Corollary 3.5 On a floating point system bounded by Ni, Ns and Ei with
|Ni −Ns| ≤ 1, for any canonical pair (nx, ex) representing x and any bounded
pair (ny, ey) representing y

ex < ey implies |x| ≤ |y|.
This means that when |Ni−Ns| ≤ 1, our floating point system behaves like

a IEEE compliant implementation as far as lexicographical order is concerned.

When |Ni − Ns| > 1, we have a very different behavior. Here is an ex-
ample that also shows that the bound on the difference Ni − Ns is tight. We
define a binary notation with the mantissa between −10012 and 1112. The
pairs (1002, 1)2 and (−10012, 0)2 are canonical yet their magnitudes and their
amplitudes are not in the same order. This cannot happen in IEEE compliant
systems or on the TMS 320C3x.

4 Sterbenz’s theorem

4.1 A first very general theorem

It is amazing to realize that the following theorem is true whatever the radix
and the bounds Ni and Ns. Moreover, the proof has been upgraded automati-
cally by the Coq proof checker from the previous proof SterbenzAux presented
in [6] that was supposed to work only when Ni = Ns.

Theorem 4.1 On a floating point system bounded by Ni, Ns and Ei with no
assumption of a relation between Ni and Ns, for any bounded pairs (nx, ex)
and (ny, ey) representing x and y such that

y ≤ x ≤ 2y,

the difference x− y can be represented by a bounded pair (n, e). Furthermore,
the bounded mantissa n and the bounded amplitude e can be defined as

n = nxβ
ex−min(ex,ey) − nyβ

ey−min(ex,ey)

e = min(ex, ey).

On a floating point system where any bounded pair can be negated with-
out rounding such as presented section 3.2, Sterbenz theorem SterbenzOppI

stated below is proved by applying twice Theorem 4.1.

Theorem 4.2 On a floating point system bounded by Ni, Ns and Ei where
any bounded pair can be negated to another bounded pair, for any bounded
pairs x and y such that

y

2
≤ x ≤ 2y,

144

Boldo,Daumas

the difference x − y can be represented by a bounded pair.

We prove the theorem correct when y/2 ≤ x ≤ y by applying Theorem 4.1
to X = y and Y = x so that X − Y = −(y − x) can be represented by a
bounded pair.

4.2 Other systems

Although we presented in section 3 that it is most desirable to use a number
system with a few natural properties including the fact that every bounded
pair can be negated without rounding, we present now the SterbenzI very
generic theorem. The details of the proof are available on the Internet.

Theorem 4.3 On a floating point system bounded by Ni, Ns and Ei where
|Ni −Ns| ≤ δ, for any canonical pair (nx, ex) representing x and any bounded
pair (ny, ey) representing y such that

y + δβmin(ex,ey)

2
≤ x ≤ 2y,

the difference x − y can be represented by a bounded pair.

5 Concluding remarks

5.1 Overview of existing hardware implementing sign magnitude

Most general purpose widely available processors use a sign magnitude rep-
resentation. Some books [10,15] even present the sign magnitude notation as
the natural floating point notation. This notation is in use in the well-studied
IEEE-754 compliant hardware. Some IBM systems use radix 10 [4] and a
few of them retain a radix 16 compatibility mode [19]. Yet most systems use
radix 2. For all these systems, Sterbenz’s equality holds with all the natural
properties presented in this work.

The properties presented here were scattered in the litterature as most of
them have been published over the time. Yet the main motivations of this work
was to compare the most common general purpose IEEE 754 based behavior
to other implementations such as IEEE 854 compatible circuits, almost IEEE
854 behavior and non IEEE behavior as we see in the following.

5.2 Texas Instrument’s two’s complement notation

Texas Instrument uses in its TMS 320C3x the two’s complement notation for
the mantissa. This notation was also in use in Honeywell 6080N computer [18].
A different notation with the same mantissa range is studied in a exercise of
[12]. This number system is well suited as all the natural properties (stability
through negation, existence and unicity of an opposite and lexicographic order
of the pairs) are still true and Sterbenz’s equality holds. We do not have any

145

Boldo,Daumas

Compare exponents

Shift mantissa

Add mantissas

Test result mantissa

Special case: zero

Test exponent

Special cases

Overflow Underflow

Renormalization

single precision computation

extended precision computation

For more details, refer to [23].

Set result

RND instruction

Figure 1. Flowchart for floating point addition followed by a RND instruction

knowledge of a working floating point unit that uses neither sign-magnitude
nor the two’s complement notation for the mantissa encoding.

The following theorem (ReductRange and ReductRangeInv) can be used
to deduce that the set of the represented numbers is almost identical with
an IEEE-compatible unit and the TMS 320C3x. Should Texas Instrument
decide to implement denormal pairs and precise rounding the unit could be
functionnaly IEEE-compliant.

Theorem 5.1 The set of the real numbers represented on a floating point
system bounded by Ni > 1 , Ns > 1 and Ei is identical to the set of the
numbers represented on a system bounded by Ni, Ns − 1 and Ei (respectively
Ni − 1, Ns and Ei) if and only if

β | Ns (respectively β | Ni).

All the theoretical results presented in this text prove that under a few
assumptions there exists a bounded float that is the exact result of the sub-
traction. We have to look at the way the addition/subtraction is performed
by the TMS 320C3x to be sure that this exact result is really returned by the
unit.

Figure 1 presents a simplified version of the flowchart of the addition. This
operation is first performed on extended precision and then rounded. The

146

Boldo,Daumas

mantissa of one of the inputs is possibly shifted depending on the actual value
of the difference of the amplitudes. The result of the addition of the mantissas
lies in 30 bits. That means that 8 additional bits are used for the intermediate
result. Adding a new case to the result of [10], we see that one guard bit
is sufficient for Sterbenz’s theorem to hold even using a different notation
than the IEEE-like sign-magnitude for the mantissa. On the contrary, the
Sterbenz’s theorem does not hold if the user manipulates extended numbers
rather than single precision numbers. In this case, the operation is performed
without any guard bit and the result is not necessarily found by the floating
point unit.

If no exception is triggered, the mantissa is accurate enough to hold the
exact result and the result before rounding is the expected exact result. As
this result was proved to be bounded, the rounding does not change it and
the final result is exact.

We deduce immediately from y/2 ≤ x ≤ 2× y that x− y ∈ [−y/2; y] so no
overflow can occur. If the exact result is a denormal number, the TMS 320C3x
returns 0 as this processor does not handles such numbers.

In this text, we have shown that the floating point number system used for
the TMS 320C3x defines almost the same real values as the system of an IEEE-
compliant processor with a very different interpretation for the mantissa field.
We have also shown that gradual underflow and correct rounding would be
very sensible in such a system although neither was implemented. Finally, we
have proved some very useful result about the TMS 320C3x such as Sterbenz’s
theorem provided no underflow occurred.

5.3 On automatic proof checking

Without a strong incentive on formal analysis of the TMS 320C3x, such work
would probably not have been carried out. It has been made possible by the
very formal and generic development of the proofs used in Coq. Odds are
that such conclusions would scarcely be trusted if they were not checked by
an automatic proof checker since the proofs are very technical and prone to
many small mistakes that would not have been ruled out by experimental
knowledge.

We will continue to investigate natural properties of floating point number
systems as they lead us to necessary conditions on the number systems. In the
case of this work, Sterbenz’s equality and the possibility to negate a number
are also key to analyze numerical software behavior such as [5].

6 Acknowledgments

We wish to thank Laurence Rideau and Laurent Thry for they work on the
initial development of the Coq theory library.

147

Boldo,Daumas

References

[1] Amerkad, A., Y. Bertot, L. Rideau and L. Pottier, Mathematics and proof
presentation in Pcoq, in: Proceedings of Proof Transformation and Presentation
and Proof Complexities, Siena, Italy, 2001.
URL
http://www-sop.inria.fr/lemme/Laurence.Rideau/proof-pco\%q.ps.gz

[2] Carreño, V. A. and P. S. Miner, Specification of the IEEE-854 floating-
point standard in HOL and PVS, in: 1995 International Workshop on Higher
Order Logic Theorem Proving and its Applications, Aspen Grove, Utah, 1995,
supplemental Proceedings.
URL http://shemesh.larc.nasa.gov/fm/ftp/larc/vac/hug95.ps

[3] Coonen, J. T., Specification for a proposed standard for floating point arithmetic,
Memorandum ERL M78/72, University of California, Berkeley (1978).

[4] Cowlishaw, M. F., E. M. Schwarz, R. M. Smith and C. F. Webb, A decimal
floating point specification, in: N. Burgess and L. Ciminiera, editors, Proceedings
of the 15th Symposium on Computer Arithmetic, Vail, Colorado, 2001, pp. 147–
154.
URL http://computer.org/proceedings/arith/

[5] Daumas, M. and P. Langlois, Additive symmetric: the non-negative case,
Theoretical Computer Science (2002).

[6] Daumas, M., L. Rideau and L. Théry, A generic library of floating-point numbers
and its application to exact computing, in: 14th International Conference on
Theorem Proving in Higher Order Logics, Edinburgh, Scotland, 2001, pp. 169–
184.
URL http://link.springer.de/link/service/series/0558/bibs/2\
%152/21520169.htm

[7] Demmel, J., Underflow and the reliability of numerical software, SIAM Journal
on Scientific and Statistical Computing 5 (1984), pp. 887–919.

[8] Goldberg, D., What every computer scientist should know about floating point
arithmetic, ACM Computing Surveys 23 (1991), pp. 5–47.
URL http://www.acm.org/pubs/articles/journals/surveys/1991-\
%23-1/p5-goldberg/p5-goldberg.pdf

[9] Harrison, J., Floating point verification in HOL light: the exponential function,
Technical Report 428, University of Cambridge Computer Laboratory (1997).
URL http://www.cl.cam.ac.uk/users/jrh/papers/tang.ps.gz

[10] Higham, N. J., “Accuracy and stability of numerical algorithms,” SIAM, 1996.
URL http://www.ma.man.ac.uk/~higham/asna.html

[11] Huet, G., G. Kahn and C. Paulin-Mohring, The Coq proof assistant: a
tutorial: version 6.1, Technical Report 204, Institut National de Recherche en
Informatique et en Automatique, Le Chesnay, France (1997).

148

Boldo,Daumas

URL ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RT/RT-02\%04.
pdf

[12] Knuth, D. E., “The Art of Computer Programming: Seminumerical
Algorithms,” Addison-Wesley, 1997, third edition.

[13] Kulisch, U., Rounding near zero, in: 4th Real Numbers and Computers
Conference, Dagstuhl, Germany, 2000, pp. 23–29.

[14] Laurent, O., P. Michel and V. Wiels, Using formal verification techniques
to reduce simulation and test effort, in: International Symposium of Formal
Methods Europe, Berlin, Germany, 2001, pp. 465–477.
URL http://link.springer.de/link/service/series/0558/papers\%/
2021/20210465.pdf

[15] Overton, M. J., “Numerical Computing with IEEE Floating Point Arithmetic,”
SIAM, 2001.
URL http://www.siam.org/catalog/mcc07/ot76.htm

[16] Rushby, J. and F. von Henke, Formal verification of algorithms for critical
systems, in: Proceedings of the Conference on Software for Critical Systems,
New Orleans, Louisiana, 1991, pp. 1–15.
URL http://www.acm.org/pubs/articles/proceedings/soft/12508\%3/
p1-rushby/p1-rushby.pdf

[17] Russinoff, D. M., A mechanically checked proof of IEEE compliance of the
floating point multiplication, division and square root algorithms of the AMD-K7
processor, LMS Journal of Computation and Mathematics 1 (1998), pp. 148–
200.
URL http://www.onr.com/user/russ/david/k7-div-sqrt.ps

[18] Schryer, N. L., A test of computer’s floating-point arithmetic unit, Technical
report 89, AT&T Bell Laboratories (1981).
URL http://cm.bell-labs.com/cm/cs/cstr/89.ps.gz

[19] Schwarz, E. M., R. M. Smith and C. A. Krygowski, The S/390 G5 floating point
unit supporting hex and binary architectures, in: I. Koren and P. Kornerup,
editors, Proceedings of the 14th Symposium on Computer Arithmetic, Adelaide,
Australia, 1999, pp. 258–265.
URL http://computer.org/proceedings/arith/0116/0116toc.htm

[20] Sterbenz, P. H., “Floating point computation,” Prentice Hall, 1974.

[21] Texas Instruments, “TMS320C3x — User’s guide,” (1997).
URL http://www-s.ti.com/sc/psheets/spru031e/spru031e.pdf

149

Thirioux

Simple and Efficient Translation from LTL
Formulas to Büchi Automata

Xavier Thirioux 1

IRIT - LIMA, 2 rue Camichel, 31071 Toulouse, France,
Xavier.Thirioux@enseeiht.fr

Abstract

We present a collection of simple on-the-fly techniques to generate small Büchi
automata from Linear Time Logic formulas. These techniques mainly involve syn-
tactic characterizations of formulas, and yet allow efficient computations. Thus
heavily relying on such proof-theoretic issues, we can omit the classical formula pre-
simplification step, and also simulation-based post-simplification steps (aka model-
theoretic issues).

Although closely related to other similar recent works in the same topic, our
ideas have led to an implementation that performs significantly better than some
of the best available tools, such as Wring or LTL2BA. We compare our tool BAOM
(“Büchi Automata Once More”) with others, on formulas commonly found in the
literature, and on randomly generated testbenchs.

Key words: Linear Time Logic. Büchi automata. Tableaux-based
method. Syntactic characterizations of formulas.

Introduction

This paper describes several new techniques to implement an efficient transla-
tion from Linear Time Logic (LTL) specifications to Büchi automata. Our
prime motivation was to implement a new symbolic BDD-based 2 model-
checker [BCM+92] based upon Linear Time Logic specifications for syn-
chronous programs, especially those written in Esterel. This work extends
previous works on the Xeve model-checker [Bou97].

In our symbolic framework, a well-known solution to achieve this goal is
first to translate (the negation of) any given LTL formula into an observer (a
finite state machine) that is plugged into the original design we want to check.
Then, by symbolic forward image computations of the product system, find

1 This work was partially supported by the SYNTEL RNRT project, France.
2 BDD stands for Binary Decision Diagram.

c©2002 Published by Elsevier Science B. V.

Thirioux

an execution that meets the fairness side conditions imposed by the formula,
the so-called Büchi conditions. Though the principle is rather simple, an effi-
cient implementation that avoids exponential blow-ups during translation of a
formula into an observer is difficult to achieve. Recently, some promising new
algorithms have been found to lower the size of automata. The resulting tools,
namely LTL2BA, Wring and EqLTL (see respectively [GO01,SB00,EH00])
seemingly outperform SPIN [Hol97].

Our main contribution is to provide a new implementation (called
BAOM) that behaves linearly (in space and time) for many more formulas (es-
pecially formulas containing fairness constraints), where previous algorithms
exhibit exponential blow-ups. Moreover, we obtain automata that are in the
average smaller than with any other method. Our prototype directly builds a
Generalized Büchi Automaton from a Linear Temporal Logic formula, without
the need for intermediate data-structures. For matters of efficiency, our tran-
sitions are labelled with BDDs rather than with single atomic propositions.
Also, our automata are generalized in a mixed sense, i.e. we have fairness
conditions on states as well as on transitions, depending upon the shape of
the formula. Notice that our ideas are primarily concerned with on-the-fly
optimizations based upon syntactic relations between formulas. We also in-
troduce a notion of “merged” states in our automata, in order to factorize
sub-tableaux when possible and reduce further the number of states.

Nevertheless, our algorithm widely borrows ideas from recent tableaux
methods, from recent techniques around alternating automata, and also from
syntactic relations between formulas. Actually, we include the syntactic sim-
plification rules of [SB00] on-the-fly during the tableaux generation, and gen-
eralize in this way similar rules of [DGV99] as well as [GO01]. Some of these
rules can also be seen as an cheap alternative to the “boolean optimization”
paradigm of [SB00], which is a general solution to remove redundant and com-
plementary sub-formulas occurring in tableaux. In our case, this simplification
may introduce new fairness constraints on transitions, as in [GO01].

Related works come in many flavours, but are principaly concerned with
improvements of the tableau method described in [VW94] and [GPVW95].
In [EH00] the authors present an algorithm in three steps : first a rewriting
step, followed by a standard translation and finally a simulation-based opti-
mization. In [SB00], the same kind of techniques are applied, yet with totally
different rewriting rules and with simulation relations that can be computed
more efficiently. In [GO01], the authors also reuse the same set of rewrit-
ing rules as in [SB00], and consider very simple on-the-fly simplification rules
that avoid fixpoint computations necessary in simulation-based methods. The
simplification process, though simple, is still efficient due to a specific trans-
lation based upon alternating automata where fairness constraints exclusively
concern transitions.

Finally, all these works point out the ability to simplify in some cases the

152

Thirioux

fairness constraints of the SCCs 3 of the generated automata, for instance by
the recursive removing of the unfair terminal SCCs.

The roadmap : section 1 introduces preliminary notions and reminds
the original tableaux method. Section 2 presents our new revisited tableaux
algorithm that builds a first version of a Büchi automaton from a LTL formula.
This algorithm splits in four parts :

(i) Use modified tableaux rules to generate a basic automaton (section 2.1);

(ii) Normalize and simplify transitions (section 2.2);

(iii) Detect unfair SCCs and simplify the automaton (section 2.3);

(iv) Merge transition-equivalent states (section 2.4).

Thereafter, section 3 presents a classical post-simplification phase to reduce
the number of states. Finally, we show in section 4 some promising results
of our prototype and compare them with other similar tools, and then we
conclude in section 5.

1 Preliminaries

We define here a variant of Büchi automata, also called Generalized Büchi
Automata, with multiple acceptance conditions on the states as well as on the
transition edges. Labels are located on the transition edges, and are boolean
formulas (denoted below as B(AP)) built from a set of atomic propositions
AP (4). We make use of a data structure to represent the edges (thus replacing
the traditional δ function) because we actually need to distinguish between
different transition edges with different fairness constraints and compatible
labels. Notice that we treat uniformly state and transition fairness.

Definition 1.1 A GBA is a five-tuple :

A = 〈AP,Q,Q0, E,F〉
where AP is the set of atomic propositions, Q is the finite set of states, Q0 ⊆ Q
is the set of initial states, E ⊆ Q × B(AP) × Q is the set of edges, and F ⊆
B(Q ∪ E) is the set of acceptance conditions, expressed as logical constraints.
A (generalized) transition function δ ∈ B(AP) → 2Q → 2Q can be recovered
from E as :

δ(p, qs) = {q′ | ∃q, l, q′.q ∈ qs ∧ 〈q, l, q′〉 ∈ E∧ |= p → l}
As p and l are encoded as BDD, we can easily decide whether |= p → l

holds or not.

A run of A is an infinite sequence σ = 〈q0, i0, t0〉; 〈q1, i1, t1〉; . . . where
qk ∈ Q, tk ∈ E and ik ⊆ AP , such that for all k ≥ 0 :

tk = 〈qk, lk, qk+1〉 ∧ ik |= lk

3 SCC stands for Strongly Connected Component.
4 For X a set of ground terms, B(X) denotes its boolean closure.

153

Thirioux

A run σ is accepting if for each F ∈ F , we have infinitely many k’s such
that :

tk, qk+1 |= F

Finally, an automaton A accepts an infinite word of input events i =
i0, i1, . . . over (2AP)ω, whenever there exists an accepting run of A :

σ = 〈q0, i0, t0〉; 〈q1, i1, t1〉; . . .
Its language L(A) is the set of infinite words it accepts.

Multiple initial states and multiple acceptance conditions are not manda-
tory, but are considered here only for convenience with respect to the overall
model-checking process in which the translation step occurs.

Definition 1.2 The linear time logic (LTL) is built from propositional logic
by adding temporal operators, yielding the following syntax :

LTL ::= AP

| B(LTL)

| LTL U LTL

| LTL R LTL

| © LTL

© is the “next-time” operator, U is the (strong) “until” operator and R is the
“release” operator. R and U are dual of each other. Usual � (“always”) and �

(“eventually”) operators are defined as �φ = False R φ and �φ = True U φ.

We briefly recall here the standard tableaux method [VW94,GPVW95], as
we use it as a basis for our own extension. Each state of the automaton denotes
and identifies a LTL formula in negative normal form, i.e. where negation has
been pushed down the parse tree of the formula. Then, from a given state,
the transition function is computed by means of semantic expansion rules.
These rules consist in applying from left to right the following equalities to
the state-formula, through the expansion function Exp :

Exp(prop) = prop

Exp(©φ) = ©φ

Exp(φ ∨ ψ) = Exp(φ) ∨ Exp(ψ)

Exp(φ ∧ ψ) = Exp(φ) ∧ Exp(ψ)

Exp(φ U ψ) = Exp(ψ ∨ (φ ∧©(φ U ψ)))

Exp(φ R ψ) = Exp(ψ ∧ (φ ∨©(φ R ψ)))

Thus, starting with a formula φ, we first expand it and then put it into dis-
junctive normal form. Each conjunctive term ψ = ψ1 ∧ψ2 . . . will constitute a
next state. According to the above rules, each ψi is either an atomic proposi-

154

Thirioux

tion api or a next-time formula ©θi. Hence, the ψ-state will be labelled by a
formula θ1 ∧ θ2 . . . whereas the transition edge from the φ-state to the ψ-state
will be labelled by a propositional formula ap1 ∧ ap2

As usual, transitions labelled with unsatisfiable propositions are removed,
thus removing unreachable states as well.

The initial states are built from expansion of the root formula. Multiple
initial states can be avoided if the initial formula is not expanded. This may
increase or decrease the number of states, depending upon the formula (see
theorem 2.13).

Finally, as for the Büchi acceptance conditions, for each φUψ occurring in
state-formulas, there exists an acceptance formula Fair

φUψ
on states :

Fair
φUψ

=
∨

{q ∈ Q | φUψ �∈ q ∨ ψ ∈ q}

Then, for this particular kind of formulas on states, the condition for a run
to be accepted boils down to the following statement : for each set Fair

φUψ
,

we have infinitely many qk’s such that qk |= Fair
φUψ

.

2 Tableaux method revisited

In the remainder, we propose different steps aiming at reducing the size of
automata. All these improvements are relative to a pervasive automaton
M = 〈AP,Q,Q0, E,F〉 assumed at each step to be the result of previous
transformations. To ease the description of our method, we define a notion of
substitution on sets as :

S[e′ | e] =

{
(S \ {e}) ∪ {e′} if e ∈ S

S else

2.1 Expanding tableaux rules

When designing this new algorithm, our main goal was to obtain small and
deterministic automata from a standard tableaux-based method.

We now define a temporal approximation of a LTL formula, driven by a
positive integer, denoted as
φ�d. This approximation is a formula representing
exactly the finite d-prefixes of infinite words identified by φ.

Definition 2.1 For any φ ∈LTL under negative normal form and d ≥ 0, we

155

Thirioux

define the function
φ�d as below :

ap�d = ap

φ ∨ ψ�d =
φ�d ∨
ψ�d

φ ∧ ψ�d =
φ�d ∧
ψ�d

φ U ψ�d =
ψ ∨ (φ ∧©(φ U ψ))�d

φ R ψ�d =
ψ ∧ (φ ∨©(φ R ψ))�d

©φ�0 = True

©φ�d+1 = ©
φ�d

Lemma 2.2 For any φ ∈LTL and any d ≥ 0, we have : φ ⇒
φ�d and also
φ ∨ (
¬φ�d ∧ ψ) ⇔ φ ∨ ψ.

Proof (sketch) The implication is proved by structural induction on φ. The
equivalence then follows.

We can now modify the expansion rules taking into account this finite
approximation. Indeed, given any integer d, we can use the following new
rules for U and R, where ¬ψ and ¬φ are put in negative normal form :

Exp(φ U ψ) = Exp(ψ ∨ (φ ∧ (
¬ψ�d ∧©(φ U ψ))))

Exp(φ R ψ) = Exp(ψ ∧ (φ ∨ (
¬φ�d ∧©(φ R ψ))))

Theorem 2.3 For any φ ∈LTL and any d ≥ 0, let Md be the automaton
produced using revised expansion rules, then L(M) = L(Md).

Proof (sketch) The automata are produced according to semantic expansion
rules so that they exactly accept words denoted by state-formulas. Then
lemma 2.2 is used to convert revised formulas to standard ones, proving that
M and Md accept the same language.

For our specific usage, using a great value of d may increase the number of
different states, as the
.�d operator generates new next-time sub-formulas.
Though, due to the extra constraints upon transitions introduced by the pre-
fix formulas, this may also increase the deterministic flavour of the resulting
automaton, that is we obtain at an early stage many more incompatible tran-
sitions, which later on we won’t have to compare (see theorem 2.9).

After some conclusive experiments showing that the average number of
states tend to increase as d does, we decided for the time being to restrain
our choice to d = 0, leading to a good balance between a small overhead
and a better overall performance. For instance, with formulas under the form∧

i=1...N ��pi, regarding N as a parameter, our method can save upto an
exponential number of states with respect to the Wring tool, or proceed ex-
ponentially faster than the LTL2BA tool (we obtain the same automaton in

156

Thirioux

this case 5).

We now assume that each state denotes a conjunctively interpreted set of
formulas, instead of a single conjunctive formula.

Let φ ≤ ψ be a relation of syntactic implication between two formulas,
similar to the ones presented in [SB00] and [DGV99]. This relation will greatly
help us in reducing the size of automata. Notice that this relation doesn’t
expand temporal operators, so that its computational cost is moderate.

Definition 2.4 For any φ, ψ ∈LTL, we define the relation φ ≤ ψ as the
smallest fixpoint of the following rules :

False ≤ ψ φ ≤ True

φ1 ∨ φ2 ≤ ψ ⇐ φ1 ≤ ψ ∧ φ2 ≤ ψ φ ≤ ψ1 ∧ ψ2 ⇐ φ ≤ ψ1 ∧ φ ≤ ψ2

φ ≤ ψ1 ∨ ψ2 ⇐ φ ≤ ψ1 ∨ φ ≤ ψ2 φ1 ∧ φ2 ≤ ψ ⇐ φ1 ≤ ψ ∨ φ2 ≤ ψ

φ1Rφ2 ≤ ψ ⇐ φ2 ≤ ψ φ ≤ ψ1Uψ2 ⇐ φ ≤ ψ2

φ1Rφ2 ≤ ψ1Rψ2 ⇐ φ1 ≤ ψ1 ∧ φ2 ≤ ψ2 φ1Uφ2 ≤ ψ1Uψ2 ⇐ φ1 ≤ ψ1 ∧ φ2 ≤ ψ2

This definition allows us to remove weak formulas from states, and there-
fore to reduce in many cases the number of different states, by the mean of
the following theorem.

Theorem 2.5 Let q = {φ1, φ2, . . . , φn} ∈ Q be a state such that φ1 ≤ φ2.
Let q′ denote the set {φ2, . . . , φn}. Then L(M) = L(M′) with the automaton
M′ = 〈AP,Q′, Q′

0, E
′,F ′〉 defined below :

• Q′ = Q[q′ | q]

• Q′
0 = Q0[q

′ | q]

• E ′ = {〈qsrc, l, qdst[q
′ | q]〉 | 〈qsrc, l, qdst〉 ∈ E}

• F ′ =




{Fairφ[q′ | q] | Fairφ ∈ F} if φ1 �= U

F [Fair′φ1
| Fairφ1] else, with

Fair′φ1
= Fairφ1 [q

′ | q] ∧ (¬q′
∨{〈qsrc, l, qdst〉 ∈ E | qdst �= q})




Proof (sketch) As our implication relation is easily proved to be sound, the
two automata accept the same language, disregarding fairness constraints. In
the case the removed formula φ1 is an until formula and thus involves a change
in acceptance conditions, we report the fairness of φ1 onto all the incoming
transition edges of state q′. Hence we mimic the standard situation where
fairness is on state q.

5 As shown in test cases presented in section 4.

157

Thirioux

2.2 Normalizing transitions

Once the outgoing transition edges from a given state are built, we proceed
with a normalization step in which we factor transitions. This factorization is
possible (and simple) because we use BDDs to represent transition labels.

Definition 2.6 Assuming that φ ∈LTL is such that Fairφ ∈ F and q, q′ ∈ Q,
we define the following global fair (and unfair) labeling functions between two
states :

lφ(q, q′) =
∨{l | t = 〈q, l, q′〉 ∈ E ∧ t, q′ |= Fairφ}

lunfair(q, q
′) =

∨{l | t = 〈q, l, q′〉 ∈ E ∧ ∀Fairφ ∈ F .t, q′ �|= Fairφ}
With these functions, we can define our normalization step.

Theorem 2.7 Let us define the automaton M′ = 〈AP,Q,Q0, E
′,F ′〉 :

• E ′ = {〈q, l, q′〉 | l = lφ(q, q′) ∨ l = lunfair(q, q
′)}

• F ′ = {Fair′φ | Fairφ ∈ F} with

Fair′φ =
∨{t ∧ q′ | t = 〈q, l, q′〉 ∈ E ′ ∧ l = lφ(q, q′)}

Then L(M) = L(M′).

Proof (sketch) This normalization may reduce the number of transition
edges between two states 6 but has no effect on the language of M since we
factorize edges with respect to fairness constraints. The only case to which we
must pay attention is when a given transition edge is fair regarding at least
two different constraints. Then we must split it into (at least) two different
edges with the same label, each satisfying only one fair constraint. But for any
accepted word, if an original edge of M would be triggered infinitely often,
the resulting edges of M′ could also be triggered infinitely often, each in turn.
The converse also holds. So finally L(M) = L(M′).

Notice that in the above theorem, we can indeed easily simplify the fairness
constraints, in order to keep only transition fairness. Actually, defining :

Fair′φ =
∨

{t | t = 〈q, l, q′〉 ∈ E ′ ∧ l = lφ(q, q′)}
would also yield the same result. But we decided to keep both kinds of fair-
ness information because this allows to implement simpler algorithms in our
prototype.

The next step consists in trying to determinize transitions from any given
state, i.e. to modify their labels so that their pairwise intersection becomes
empty. This usually leads to a lesser number of (smaller) transition edges,
and allow in practice further simplifications (see theorem 2.13). Besides, the
structure of the automaton is then more easily amenable to efficient model-
checking algorithms. Actually, the deterministic flavour of an automaton is a

6 After this operation, there always exist less than |F|+1 different transition edges between
any two states.

158

Thirioux

salient feature in symbolic model-checking, because it appears to have a great
influence on efficiency of partitioned states space exploration algorithms for
instance.

Definition 2.8 We classically extend the notion of implication between for-
mulas to an implication between states. For any q, q′ ∈ Q, we define :

q ≤ q′ = ∀φ′ ∈ q′.∃φ ∈ q.φ ≤ φ′

Theorem 2.9 Let us consider t1 = 〈q, l1, q1〉 ∈ E and also t2 = 〈q, l2, q2〉 ∈ E.
Now assume q1 ≤ q2, l1 ∧ l2 �= False and :

∀Fairφ ∈ F .t1, q1 |= Fairφ ⇒ t2, q2 |= Fairφ

Then the automaton M′ = 〈AP,Q,Q0, E
′,F ′〉 defined below :

• E ′ = E[t′1 | t1] with t′1 = 〈q, l1 ∧ ¬l2, q1〉
• F ′ = F
is such that L(M) = L(M′). We remove the new transition t′1 from E ′ and
set F ′ = {Fairφ[False | t′1] | Fairφ ∈ F} if l1 ∧ ¬l2 = False holds.

Proof (sketch) Following definitions 2.4 and 2.8, q1 ≤ q2 implies L(q1) ⊆
L(q2). So, we can safely remove from t1 the input events that are common
with t2. The fairness constraints don’t need to be changed (but in case of
mere removal) since it is easier to reach q2 through t2 than to reach q1 through
t1 w.r.t. fairness constraints, and l1 ∨ l2 = (l1 ∧ ¬l2) ∨ l2. Hence, if we had
an accepted word passing from q to q1 through l1 ∧ l2, we know that it would
also be accepted via q2.

2.3 Detecting unfair SCCs

Our last but one on-the-fly step can simplify the fairness constraints on states,
by early detecting of certain unfair SCCs, i.e. SCCs where at least one fairness
constraint is never satisfied for any of its states, or transient SCCs, i.e. SCCs
with only one state and no self loop. Besides, we define a syntactic under-
approximation of unfair and transient SCCs.

Definition 2.10 For q ∈ Q, we define the following FairLoop and Unstable
predicates 7 :

Unstable(q) = ∃φ ∈ q.φ �= True ∧ ¬FairLoop(φ, q)

FairLoop(φ, q) = ∃ψ = ψ1Rψ2 ∈ q.φ = ψ ∨ φ ≺ ψ2

Lemma 2.11 For any q ∈ Q, such that Unstable(q), then the SCC of q is
either transient or unfair.

7 For any formulas φ and ψ, φ ≺ ψ denotes the subterm relation, but for negated atoms.
That is, for p an atomic proposition, we have p �≺ ¬p.

159

Thirioux

Proof (sketch) By contradiction. Assume the SCC of q is fair. Then, follow-
ing the expansion rules, each non-R formula φ must be (transitively) generated
by the right-hand side ψ of a R formula, which are the only fair looping op-
erators in LTL. Hence, because we don’t change the shape of formulas when
expanding them, it is necessary to check φ ≺ ψ. Therefore, Unstable(q) does
not hold. As a conclusion, an accepted run cannot remain stuck in the SCC
of an unstable state.

Theorem 2.12 Let q be an unstable state, we change the fairness constraints
by defining the automaton M′ = 〈AP,Q,Q0, E,F ′〉 as :

• F ′ = {Fairφ[False | q] | Fairφ ∈ F}
Then we have L(M) = L(M′).

Proof (sketch) We can safely remove fairness information relative to an un-
stable state and its incoming transition edges, since an accepted word cannot
visit it infinitely often, as proved by lemma 2.11. So, L(M) = L(M′).

2.4 Merging states

Last, but not least, we define the notion of merged states. It consists in merg-
ing some target states of some transitions with the same labels and fairness
constraints, making a compound state. This also applies to the initial states
that can be merged as one single state.

Theorem 2.13 Let us consider t1 = 〈q, l1, q1〉 ∈ E and also t2 = 〈q, l2, q2〉 ∈
E. Now assume we have l1 = l2(

8) and :

∀Fairφ ∈ F .t1, q1 |= Fairφ ⇔ t2, q2 |= Fairφ

Then the automaton M′ = 〈AP,Q′, Q0, E
′,F ′〉 defined below :

• Q′ = Q ∪ {q12}
• E ′ = (E \ {t1, t2}) ∪ {t12} with t12 = 〈q, l1, q12〉
• F ′ = {Fairφ[False | {t1, t2}] ∨ Fairφ[t12 ∧ q12 | t1 ∧ q1] | Fairφ ∈ F}
is such that L(M) = L(M′).

Proof (sketch) As we ensure that transitions as well as target states have
the same impact on fairness, we can merge them without modifying the set of
accepted words. Notice that the original target states are not removed, but if
they become unreachable. Then, L(M) = L(M′).

A merged state is defined as the set of its components. In theorem 2.13, we
have thus q12 = {q1, q2}. Ordinary states can also be defined as singleton sets.
So from now on we move up a level and assert that a state indeed represents
a set of sets of formulas.

8 These labels are identical up to BDD normalization.

160

Thirioux

It seems likely that states accessible through the same label have some-
thing in common, and that it may be worth trying to identify them. We only
consider identical labels, as if we would consider a more relaxed constraint
(for instance labels with a non empty intersection), this could create exponen-
tially more new states. In practice, it seems that most of the time interesting
compound states are created, and not too many of them.

Nevertheless, it may happen that some merged state in the automaton
is subsumed by its components, existing as states on their own. Then the
merged state is there superfluous and can be safely removed.

The initial state, put in DNF, can also play the role of a merged state. By
the following theorem, it can be split as any other real merged state in order
to reduce the overall number of states.

For merged states to be split back, we have to define the notion of sub-
sumption.

Definition 2.14 For any set of sets of formulas (not necessarily a actual
state) S, we define what it means to be subsumed by states of M, with the
following predicate :

Subsumed(S) ⇐ ∃q ∈ Q.S = q

Subsumed(S1 ∪ S2) ⇐ Subsumed(S1) ∧ Subsumed(S2)

Theorem 2.15 Let us consider q = q1 ∪ . . . ∪ qn ∈ Q. Assume Subsumed(q)
holds. Then the automaton M′ = 〈AP,Q′, Q′

0, E
′,F ′〉 defined below :

• Q′ = Q \ {q}

• Q′
0 =




(Q0 \ {q}) ∪ {q1} ∪ . . . ∪ {qn} if q ∈ Q0

Q0 else

• E ′ = E \ {〈qsrc, l, q〉 ∈ E}
• F ′ = {Fairφ[False | q] | Fairφ ∈ F}
is such that L(M) = L(M′).

Proof (sketch) We remove a state q that is exactly subsumed by others as
stated in definition 2.14, and redirect its incoming edges towards its compo-
nents, which together recognize the same language as q. Henceforth L(M) =
L(M′).

This theorem can be applied on-the-fly or later when the automaton is
totally built. We chose to use it as soon as possible, in order to reduce the
complexity of the post-simplification phase, but it may be worth postponing
its use so as to process all merged states once and for all. Intermediate choices
are currently being experimented too.

161

Thirioux

3 Post-simplification

As for automata post-simplification phase, we remove (all but one of) identical
states, which is a pertaining step in all related works. Indeed, we haven’t
explored more general simulation relations, because they sometimes tend not
to lend themselves to efficient computations.

Theorem 3.1 Let us consider two states q1, q2 ∈ Q, with the same outgoing
transition edges, i.e. such that for any n = 1, 2 and n = 3 − n :

∀tn = 〈qn, ln, q
′〉 ∈ E.∃tn = 〈qn, ln, q

′〉 ∈ E.

ln = ln ∧ ∀Fairφ ∈ F .tn, q
′ |= Fairφ ⇔ tn, q

′ |= Fairφ

Without loss of generality, we assume that whenever at least one of q1 or q2

is initial, then it is q1. Then the automaton M′ = 〈AP,Q′, Q′
0, E

′,F ′〉 defined
below :

• Q′ = Q \ {q2}
• Q′

0 = Q0 \ {q2}
• E ′ = {〈qsrc, l, q

′
dst〉 | 〈qsrc, l, qdst〉 ∈ E ∧ q′dst = qdst[q1 | q2]}

• F ′ = {Fairφ[〈q1, l, qdst〉 | 〈q2, l, qdst〉 ∈ E][q1 | q2] | Fairφ ∈ F} 9

is such that L(M) = L(M′).

Proof (sketch) This is a classical operation in automata theory.

4 Experiments

The following examples have all been tested on a 400MHz bi-pentiumII PC,
with 256 Mo.

We include first some tests taken from [EH00,GO01] (see figure 1), show-
ing the relative performances of Wring, LTL2BA and BAOM. For the sake of
simplicity, we decided to present only results of the best available tools, be-
cause they constantly outperform other tools like SPIN for instance. Likewise,
elapsed time is most of the time not shown, because all these tools usually
achieve the translation within 5 seconds, which is largely acceptable. Yet,
there exist pathological formulas such that time consumption is then expo-
nential. In this case, we precisely show elapsed time or indicate that a crash
had occurred or timeout (10 hours) had expired (†).

Then, we show some results for 3 collections of 1000 randomly gener-
ated formulas, processed with LTL2AUT, Wring and BAOM. Temporal and
boolean operators are drawn with the same probability (see figure 2).

Finally, in order to (loosely) compare BAOM to LTL2BA, though we had
only a restricted access to the LTL2BA tool via a web page, we use a testbench

9 In the above theorem, the term Fairφ[〈q1, l, qdst〉 | 〈q2, l, qdst〉 ∈ E] means that the
substitution is performed for all 〈q2, l, qdst〉 ∈ E.

162

Thirioux

for our tool generated with the same hypothesis as a similar testbench for
LTL2BA presented in [GO01] (see figure 3). We have randomly drawn 1000
generated formulas with 10 nodes and 3 atoms.

Our prototype is entirely written in OCaML [DU], and thus time compar-
isons with other tools issued from similar works is hardly relevant due to the
extreme diversity of implementation languages (and computers). For instance,
the SPIN tool [Hol97] as well as the LTL2BA tool [GO01] and the LTL2AUT
tool [DGV99] are written in C, whereas the EqLTL tool [EH00] is written in
ML, and the Wring tool [SB00] in Perl.

Notice that transient memory requirements are not mentionned here due to
impracticability of measures. Besides, because our transformations are almost
all applied on-the-fly, memory consumption in our case is linearly bound to
the size of the resulting automaton.

LTL states(time in seconds)

formulas Wring LTL2BA BAOM

examples from [EH00]

pU(q ∧ �r) 3 2 2

pU(q ∧©(rUs)) 5 3 3

pU(q ∧©(r ∧ (�(s ∧©�(t ∧©�(u ∧©�v)))))) 13 7 7

�(p ∧©�q) 3 2 2

�(p ∧©(q ∧©�r)) 6 4 4

�(q ∧©(pUr)) 5 3 3

��p ∨ ��q 4 3 3

�(p → qUr) 3 2 2

�(p ∧©�(q ∧©�(r ∧©�s))) 9 5 5∧
i=1...5 ��pi 31(195) 1 1

(pU(qUr)) ∨ (qU(rUp)) 4 5 2

(pU(qUr)) ∨ (qU(rUp)) ∨ (rU(pUq)) 4 7 2

�(p → qU(�r ∨ �s)) 4 4 4

examples from [GO01]

¬((
∧

i=1...10 ��pi) → �(q → �r)) † 2(36000) 2(44)

¬(p1U(p2U(. . . Up8) . . .) † 8(1200) 8

Fig. 1. Examples excerpt from [EH00,GO01].

163

Thirioux

10 nodes 15 nodes 20 nodes

3 atoms 3 atoms 5 atoms

method states time states time states time

LTL2AUT 6698 127s 11086 453s 25528 2740s

Wring 4043 203s 4830 534s 7748 1973s

BAOM 3026 3.45s 3318 6.5s 4723 40s

Fig. 2. Comparison between LTL2AUT, Wring and BAOM.

method formulas avg. time max. time avg. states max. states

LTL2BA 200 0.01 0.04 4.51 39

BAOM 1000 0.003 0.09 3.06 16

Fig. 3. Loose comparison between LTL2BA and BAOM.

5 Conclusion

We have succeeded in devising an efficient algorithm, based upon syntactic
considerations, with techniques designed to be used on-the-fly. This shows
that a careful examination of parse trees of formulas can lead to similar or
better results than a posteriori simulation-based methods. In real-life appli-
cations, efficiency is also due to the heavy use of BDDs in our data-structures,
but this advantage doesn’t really show up in our test cases due to the small
number of atomic propositions. The main original factors of improvement
over other similar tools are the introduction of finite d-prefixes in our revised
expansion rules and also the fairness paradigm we have developed in conjunc-
tion with the syntactic implication between formulas. Yet, a more careful
study of the relationship between values of d, shape of formulas and size of
resulting automatas should obviously be carried out. As for the merging states
techniques, it appears to have an impact in case of quasi-redundant or incom-
patible sub-formulas (this is often the case for randomly generated formulas),
but don’t usually come into play for short hand-written specifications.

Notice that the current implementation of our tool hasn’t been specifically
geared towards efficiency since it was developped in a purely functional setting
(except for the BDD package). More efficient techniques such as hash-caching
(as used in BDD algorithms) should be developped in order to deal with parse
trees of very large formulas.

Indeed, for the time being the good ratio between more involved syntactic
algorithms (being under examination) and practical efficiency is not clearly
worked out, all the more because previous works mainly focused upon model-
theoretic methods. We claim nevertheless that the syntactic level can offer

164

Thirioux

much more information, with a reasonable cost.

The benchmarks we have conducted tend to support this claim, though
these tests mostly concern random formulas. In order to get interesting bench-
marks, we would like to test only “sensible” specifications (i.e. used in indus-
trial contexts for instance), which seems to be a delicate task, being known
that a large database of such specifications is not yet available.

Acknowledgement

The author would like to thank kindly Robert de Simone for fruitful discus-
sions and collaboration.

References

[BCM+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.
Dill, and L. J. Hwang. Symbolic model checking: 10e20 states and
beyond. Information and Computation, 98(2):142–170, 1992.

[Bou97] Amar Bouali. Xeve: an esterel verication environment (version v1.3).
Technical Report RT-0214, INRIA Sophia-Antipolis, December 1997.

[DGV99] Marco Daniele, Fausto Giunchiglia, and Moshe Y. Vardi. Improved
automata generation for linear temporal logic. In International
Conference on Computer Aided Verification, pages 249–260, 1999.

[DU] Documentation and User’s. The objective caml system release 3.02.

[EH00] Kousha Etessami and Gerard J. Holzmann. Optimizing buchi automata.
In International Conference on Concurrency Theory, pages 153–167,
2000.

[GO01] Paul Gastin and Denis Oddoux. Fast ltl to bchi automata translation,
2001.

[GPVW95] Rob Gerth, Doron Peled, Moshe Vardi, and Pierre Wolper. Simple
on-the-fly automatic verification of linear temporal logic. In Protocol
Specification Testing and Verification, pages 3–18, Warsaw, Poland,
1995. Chapman & Hall.

[Hol97] Gerard J. Holzmann. The model checker SPIN. Software Engineering,
23(5):279–295, 1997.

[SB00] Fabio Somenzi and Roderick Bloem. Efficient bchi automata from ltl
formulae. In International Conference on Computer Aided Verification,
pages 53–65, 2000.

[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite
computations. Information and Computation, 115(1):1–37, 1994.

165

Biere, Artho, Schuppan

Liveness Checking as Safety Checking

Armin Biere, Cyrille Artho, Viktor Schuppan

Computer Systems Institute, ETH Zentrum RZ H, CH-8092 Zürich, Switzerland

Abstract

Temporal logic is widely used for specifying hardware and software systems. Typi-
cally two types of properties are distinguished, safety and liveness properties. While
safety can easily be checked by reachability analysis, and many efficient checkers for
safety properties exist, more sophisticated algorithms have always been considered
to be necessary for checking liveness. In this paper we describe an efficient transla-
tion of liveness checking problems into safety checking problems. A counter example
is detected by saving a previously visited state in an additional state recording com-
ponent and checking a loop closing condition. The approach handles fairness and
thus extends to full LTL.

1 Introduction

Model Checking [12] is one of the most successful approaches for verifying
temporal specifications of hardware and software systems. System properties
are specified in temporal logic [13] for which various formalisms exist. Typ-
ically two types of properties are distinguished, safety and liveness [19]. In
practical applications, safety properties are prevalent. Therefore very efficient
algorithms and tools have been devised for checking safety properties. Still the
specification of most systems contains liveness parts. We describe a generic
translation procedure that takes a system with a liveness specification and
translates it into a new system, for which a safety property is valid iff the
liveness property in the original system holds.

The main motivation is to enable existing tools and techniques to check
liveness which were originally supposed to work on safety properties only. For
instance sequential ATPG (automatic test pattern generation) [22] can be used
to check simple classes of temporal formulae [3], but general liveness proper-
ties have been out of reach. The same applies to STE (symbolic trajectory
evaluation) [26,9], though a generalized version of STE has been published
that can handle all ω-regular properties [27]. Both technologies have been in
use in industry for over a decade [22,6] and efficient implementations exist.

For symbolic model checking [21] there is a vast literature on optimiza-
tions which are only applicable to safety. Frontier set simplification [7], dense

c©2002 Published by Elsevier Science B. V.

Biere, Artho, Schuppan

[23] and prioritized [8] reachability analysis all try to speed up BDD-based
reachability calculation, but have not been adapted to handle liveness so far.

Forward model checking [17,15,2] is an attempt to improve on backward
based symbolic model checking by visiting reachable states only and catching
bugs as early as possible. It is motivated by the observation that checking
safety properties amounts to reachability analysis. Forward model checking
tries to use forward image calculations exclusively. Since we are able to trans-
late liveness into safety we expect to have the same benefits without changing
the model checking algorithms.

Kupferman and Vardi have developed an approach to simplify automaton-
based model checking of safety properties by searching for finite violating
prefixes [18]. With our translation we follow a similar goal by reducing liveness
properties to safety properties and thus enabling the application of a much
wider range of verification algorithms.

Our translation is structural. It respects the hierarchy of the system and
can easily be applied, even manually, on the design entry level, eg in a Hard-
ware Description Language. This is particularly useful if a tool does not
include other model checking algorithms beside safety checking, and, as it is
usually the case in a commercial setting, there is no access to the source code.

The basic idea is borrowed from explicit on-the-fly model checking [14] and
bounded model checking [1]: a counter example to a liveness property in a
finite system is lasso-shaped, it consists of a prefix that leads to a loop. As in
[1] the major challenge is how to detect the loop. In our translation a loop
is found by saving a previously visited state and later checking whether the
current state already occurred.

For simple liveness properties, the result of the translation is not much
larger than the original model checking problem. We also show how to handle
more complicated liveness properties, for instance involving the until operator.
By adding fairness constraints the technique can be extended to full LTL.

The next section elaborates on various examples to establish an intuitive
understanding of the translation. In Sect. 3 we introduce the necessary formal
background. We precisely define the translation in Sect. 4, prove its cor-
rectness and compare the complexity of the original and the resulting model
checking problems. In the same section we mention how to extend our trans-
lation to handle fairness and LTL. Preliminary experiments in Sect. 5 show
the feasibility of our approach, and Sect. 6 concludes.

2 Intuition

A counter example trace to a simple liveness property AFp is an infinite path
where the body p of the liveness property holds nowhere, or equivalently ¬p
holds along the whole path. Since we restrict our models to be finite, such
a trace can always be assumed to be lasso-shaped as depicted in Fig. 1. It
consists of a prefix that leads to a loop, starting at the loop state sl. From

168

Biere, Artho, Schuppan

p¬ p¬ p¬ p¬p¬

0s sls1 l+1s sk

Fig. 1. A generic lasso-shaped counter example trace for AFp.

every infinite trace in a finite model we can construct a lasso-shaped trace by
closing the loop as soon as a state occurs the second time. Note that ¬p still
holds along the constructed path.

This observation is at the core of various model checking algorithms. Ex-
amples are explicit state algorithms for Büchi Automata [14] and unfolding
liveness properties in bounded model checking [1]. With this restriction we
only need to search for lasso-shaped counter examples. This is used in both
translations discussed in this paper. The first translation, shown for illus-
tration only, is called counter based translation. It extends the well known
technique to check for bounded liveness only, but is not of practical value.
Our main contribution is the state recording translation. It produces a state
machine that may save at any time a previously reached state. Both transla-
tions do not only modify the property to be checked but also add additional
checking components to the model while still maintaining bisimulation equiv-
alence [12].

2.1 Counter Based Translation

In model checking applications it is often observed that a liveness property
AFp can further be restricted by adding a bound k on the number of steps
within which the body p has to hold. The bound is either given in the spec-
ification or may be determined by manual inspection. A bounded liveness
property AFkp is defined as

AFkp ≡ A(p ∨ Xp ∨ · · · ∨ Xkp), with Xip ≡ X · · ·X︸ ︷︷ ︸
i−times

p(1)

and clearly AFkp implies AFp. The reverse direction is also true if the bound
is chosen large enough, in particular as large as the number of states |S| in
the model, since all states are reachable in |S| steps.

A trivial translation would just exchange AFp by AFkp with k the num-
ber of states. However, the expansion of AFkp in (1) results in a very large
formula, especially in the context of symbolic model checking. To avoid this
explicit expansion, our counter based translation adds a counter to the model
which counts the number of states reached so far. Now it only remains to
check, whenever the counter reaches the number of states of the original model,
that p was found to hold in at least one state reached so far. This latter prop-
erty can be checked by attaching a boolean flag to the model that remembers
whether p was satisfied in the past. This last step is property dependent.

As a first example we use a modulo 4 counter with initial state 0. In Fig. 2
an SMV program [21] and a state graph of the counter are shown. While

169

Biere, Artho, Schuppan

MODULE main
VAR state : -1..3;
DEFINE
 found := state = -1;
ASSIGN
 init(state) := 0;
 next(state) :=
 case
 state = 3 : 0;
 1 : state + 1;
 esac;
SPEC AF found

3210−1

Fig. 2. A modulo 4 counter with unreachable state -1.

all states are reachable from -1, that state itself is unreachable because the
counter wraps back to 0.

The state space of the example encompasses five states. After five transi-
tions we check whether found stayed false all the way from the initial state.
In this case a counter example is found. Otherwise, the liveness property is
valid, since every potential lasso-shaped trace of length 5 contains a state in
which found holds.

This allows for a trivial translation of the liveness property into a safety
property. The model is extended with a boolean variable live, which denotes
whether found has already been true. A variable counter counts the number
of states.

The left column of Fig. 3 shows the translated specification. The live-
ness property AF found translates into the safety property AG (finished ->

live). This translation is extremely inefficient, because it always requires
traversing five states.

2.2 State Recording Translation

Instead of conservatively searching as long as required in the worst case, the
search should terminate whenever a previously seen state sl is traversed. Each
time such a loop has been found, the liveness property p has to hold for at least
one state visited before. Otherwise we have a counter example (see Fig. 1).
Because state space traversal is memoryless, there is no way of explicitly ex-
pressing that property p must have been true at an earlier time as soon as we
reach state sl a second time.

The new model needs a way of “saving” a previously seen state for detecting
a loop. Since we do not know beforehand whether we will see the current state
again later, we use an oracle save that tells the model whether the current
state is assumed to be the first state of a loop. To prevent overwriting the
copy, another variable saved is used. After sk, the last state of the loop, sl is
encountered again (see Fig. 4). At that time, the predicate looped becomes

170

Biere, Artho, Schuppan

MODULE main
VAR state : -1..3;
 counter : 0..5;
 live : boolean;

DEFINE
 found := state = -1;
ASSIGN
 init(state) := 0;
 next(state) :=
 case
 state = 3 : 0;
 1 : state + 1;
 esac;

 init(counter) := 0;
 next(counter) :=
 case
 counter < 5 :
 counter + 1;
 1 : counter;
 esac;
 init(live) := 0;
 next(live) :=
 live | found;
DEFINE
 finished := counter = 5;
SPEC AG (finished -> live)

MODULE main
VAR state : -1..3;
 loop : -1..3;
 live : boolean;
 save : boolean;
 saved : boolean;
DEFINE
 found := state = -1;
ASSIGN
 init(state) := 0;
 next(state) :=
 case
 state = 3 : 0;
 1 : state + 1;
 esac;
 init(saved) := 0;
 next(saved) :=
 saved | save;
 next(loop) :=
 case
 !saved & save : state;
 1 : loop;
 esac;
 init(live) := 0;
 next(live) := live | found;
DEFINE
 looped :=
 saved & state = loop;
SPEC AG (looped -> live)

(a) counter (b) safe

Fig. 3. A counter based translation and our new translation of the liveness property.

p¬ p¬ p¬ p¬p¬ p¬
sl

sl

sk

sl

l+1s +1kss10s
=

sl

Fig. 4. Loop checking for AFp counter examples as reachability.

true, and property p must have been fulfilled at least once.

As visualized in Fig. 4, the loop closing condition looped checks, whether
the current state has been visited earlier. Correspondingly Fig. 4 shows one
more state than Fig. 1. Therefore live and saved should not refer to the
current state. Their purpose is to remember whether found and respectively
save were true in the past. In particular their initial value should be false.

171

Biere, Artho, Schuppan

2.3 Translation of fairness into safety

Fairness properties can also be translated using the same methodology. Figure
5 shows an example with two tasks t0 and t1 that count from 0 to 7 each. At
each step, only one task is allowed to take its turn. The liveness property,
stating that each task eventually arrives at state 7, can only be fulfilled if the
turns are taken in a fair manner, i.e. each task eventually gets its turn.

In order to include fairness in our example, we define a new property fair.
It records whether the fairness property is true at least once within each loop.
Because save and saved are global, they are shared with the task modules.

3 Preliminaries

Our notation follows [12]. Let A be a set of atomic propositions. A Kripke
structure K, or simply model, wrt. A is defined as K = (S, I, T, L) with S
a finite set of states, I ⊆ S a set of initial states, T ⊆ S × S its transition
relation, and L : S → 2A a labelling function. We assume that the set of
initial states is non-empty and the transition relation is total, i.e. for every
state s ∈ S there exists a state s′ ∈ S with (s, s′) ∈ T . We write T (s, s′)
whenever (s, s′) ∈ T and similarly I(s).

As temporal logic we use a subset of CTL* with the next time operator
X, and the eventuality operator F. We do not treat the until operator U
or further operators in detail, since our translation works for full LTL which
includes these operators. We will only consider the universal path quantifier
A. The propositional operators are conjunction (∧) and negation (¬). We
also add the propositional constants {0, 1}.

The set of CTL* formulae is made of two types of formulae, path formulae
Φ and state formulae Ψ. All atomic propositions p ∈ A are state formulae,
which can always be coerced to path formulae. Negation maintains the type of
the argument. The same applies to conjunction if the types of the arguments
match. Otherwise their conjunction is a path formula. Temporal operators
are applied to state formulae. A path formula may be prefixed by a path
quantifier to obtain a state formula.

Semantics for path formulae are defined wrt. paths, where the set Π of
paths of K is the union of all finite and infinite sequences π = (si) with si ∈ S
and T (si, si+1) for 0 ≤ i < |π|. The length |π| of π is defined as the number of
transitions. We only consider non-empty paths. We write π(i) for si and πn

for the sequence (si+n), which is the same as the original path with its first n
states removed. Let p ∈ A, φ, φ1, φ2 ∈ Φ and ψ, ψ1, ψ2 ∈ Ψ. The validity of

172

Biere, Artho, Schuppan

MODULE task(id,turn)
VAR
 state : 0..7;

ASSIGN
 init(state) := 0;
 next(state) :=
 case
 turn = id &
 state < 7
 : state + 1;
 1 : state;
 esac;
DEFINE
 found := state = 7;

FAIRNESS
 turn = id

MODULE main
VAR
 turn : 0..1;
 t0 : task(0,turn);
 t1 : task(1,turn);

DEFINE
 found :=
 t0.found &
 t1.found;

SPEC
 AF found

MODULE task(id,turn,save,saved)
VAR
 state : 0..7;
 loop : 0..7;
 fair : boolean;
ASSIGN
 init(state) := 0;
 next(state) :=
 case
 turn = id &
 state < 7
 : state + 1;
 1 : state;
 esac;
DEFINE
 found := state = 7;
 looped := saved & state = loop;
ASSIGN
 init(fair) := 0;
 next(fair) := fair |
 id = turn & (save | saved);
 next(loop) :=
 case
 save & !saved : state;
 1 : loop;
 esac;

MODULE main
VAR
 turn : 0..1;
 t0 : task(0,turn,save,saved);
 t1 : task(1,turn,save,saved);
 save : boolean;
 saved : boolean;
 live : boolean;
DEFINE
 found := t0.found & t1.found;
 looped := t0.looped & t1.looped;
 fair := t0.fair & t1.fair;
ASSIGN
 init(saved) := 0;
 next(saved) := saved | save;
 init(live) := 0;
 next(live) := live | found;
SPEC
 AG (looped & fair -> live)

(a) live (b) safe

Fig. 5. Hierarchical translation of liveness with fairness into pure safety.

173

Biere, Artho, Schuppan

state and path formulae for s ∈ S and infinite π ∈ Π are defined as follows:

s |= A φ iff π |= φ for all π ∈ Π with π(0) = s s |= p iff p ∈ L(s)

s |= ψ1 ∧ ψ2 iff s |= ψ1 and s |= ψ2 s |= ¬ψ iff s 	|= ψ

π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2 π |= ¬φ iff π 	|= φ

π |= F φ iff there exists i ≥ 0 with πi |= φ π |= X φ iff π1 |= φ

π |= ψ iff π(0) |= ψ

We will also use other boolean operators, such as disjunction (∨) and implica-
tion (→). The temporal operator globally G is defined as G φ ≡ ¬F¬φ and
the existential path quantifier as E φ ≡ ¬A¬φ.

A path π is initialized wrt. a given model K = (S, I, T, L) iff π(0) ∈ I.
Then a CTL* formula f is valid for K iff π |= f for all initialized infinite paths
π. Model checking determines the validity of f for K. Two model checking
problems P = (K, f) and P ′ = (K ′, f ′) are equivalent iff K |= f ⇔ K ′ |= f ′.

The first two steps of our translation in Sect. 4 produce equivalent model
checking problems, proved by bisimulation equivalence. Two models K =
(S, I, T, L) and K ′ = (S ′, I ′, T ′, L′) over the same set of atomic propositions
are bisimulation equivalent iff there exists a relation ∼ ⊆ S × S ′ with the
following properties: Let s ∈ S and s′ ∈ S ′ with s ∼ s′. First the labelling has
to match, that is L(s) = L′(s′). Second for all t ∈ S with T (s, t) there has to
exist t′ ∈ S ′ with T ′(s′, t′) and t ∼ t′. Finally, for all initial states s ∈ I there
has to be an initial state s′ ∈ I ′ with s ∼ s′. The dual properties have to hold
as well.

The complexity of the original model checking algorithm [11] for simple
properties, such as AFp and AGp, is linear in the size of the model K. Par-
ticularly it is linear in the number of states |S| and the number of transitions
|T |. In the case of on-the-fly model checking [14] the complexity can fur-
ther be restricted to be linear in the number of reachable states |R| with
R = {π(i) | i ≥ 0, π ∈ Π, π initialized}. For symbolic model checking with
BDDs [21] the number of (reachable) states is less important than the number
of fixpoint iterations. This number is bounded by the diameter d which is
defined as the maximal distance δ(s, t) between two states s, t ∈ S with

δ(s, t) = min { k | π ∈ Π, |π| = k, π(0) = s, π(k) = t}
In BFS reachability analysis the number of iterations can further be restricted
to the maximal distance r, called radius, of all reachable states to some pos-
sibly varying initial state. In backward fixpoint computations, which are the
traditional way of checking liveness properties, we can introduce a similar no-
tion of a backward radius which is the number of backward iterations after
which the fixpoint is reached. The backward radius depends not only on the
model but also on the property. Note that backward and forward radius are

174

Biere, Artho, Schuppan

not related. For instance, an inductive invariant p has a backward radius of
one when checking AGp, independent of the size of the model. In practice pure
backward model checking is usually outperformed by forward model checking
[17] or a restricted version of backward model checking in which the approxi-
mations in the fixpoint computation are restricted to the pre-computed set of
reachable states.

4 Translation

In this section we precisely describe our state recording translation on an
abstract level and prove its correctness. The application to a concrete model
description language such as the SMV input language used for the experiments
is left to the reader. We also do not treat the counter based translation
formally. In the second part of the section we discuss the efficiency of our
translation by comparing size and diameter of the original and the translated
model. In the last part we describe the extention to fairness and LTL.

4.1 Correctness

Let K = (S, I, T, L) be a Kripke structure and AFp be the liveness property
we want to check. As a first step we construct K⊥ = (S⊥, I⊥, T⊥, L⊥), with
S⊥ = S× (S∪{⊥}), and I⊥ = I×{⊥}. The new transition relation is defined
as

T⊥((s, t), (s′, t′)) ⇔ T (s, s′) ∧ (t′ = t ∨ (t = ⊥ ∧ t′ = s))(2)

which operates on the first state component like the original transition relation.
In the second state component a previously reached original state may be
recorded, nondeterministically, but at most once (see also Fig. 4). Therefore
T⊥ is monotonic in the second state component for the order ≤⊥ ⊆ (S∪{⊥})2

with s ≤⊥ t iff s = t or s = ⊥. The new labelling is obtained as L⊥ = L ◦ ρ
using the projection function ρ operating on pairs with ρ((s, t)) = s.

We further assume that ⊥ is a new state that does not already occur in
S. In essence our translation simulates the original behavior of K without
introducing dead ends, maintaining the labelling of the states. Therefore we
can prove that K and K⊥ are bisimulation equivalent under the bisimulation
∼ ⊆ S × S⊥, with s ∼ s⊥ ⇔ ρ(s⊥) = s. To prove that ∼ is a bisimulation
we use λ⊥:S → S⊥ defined as λ⊥(s) = (s,⊥) and extend both λ⊥ and the
projection function ρ to paths in the natural way. Then we can easily check
that π ∼ λ⊥(π) and ρ(π⊥) ∼ π⊥ for all paths. These functions provide the
necessary witnesses for the existential quantifiers in the requirements for ∼
being a bisimulation.

Lemma 4.1 K and K⊥ are bisimulation equivalent.

The next step adds a flag that remembers whether p has ever been valid
on the path so far. The result is Kp = (Sp, Ip, Tp, Lp) with Sp = S⊥ × {0, 1},

175

Biere, Artho, Schuppan

Ip = I⊥ × {0}, and Tp((s, x), (s
′, x′)) iff

T⊥(s, s′) ∧ (p ∈ L⊥(s) → x′ = 1) ∧ (p 	∈ L⊥(s) → x′ = x)

The rest is defined as in the first step. Again Tp is monotonic in the second
state component, in this case for the order of natural numbers restricted to
{0, 1}. Note, that Kp depends on the property being checked. Similar reason-
ing as before with a slightly more complex λp : S⊥ → Sp and a transitivity
argument gives the following Lemma.

Lemma 4.2 K and Kp are bisimulation equivalent.

Since validity of CTL* formulae is preserved under bisimulation equiva-
lence [4,12], we obtain the equivalence of (K,AFp) and (Kp,AFp). The final
step in our translation consists of adding a new atomic proposition q with

q ∈ Lp (((s, t), x)) ⇔ s = t → x = 1(3)

This definition shows the correctness of our translation.

Theorem 4.3 (K,AFp) and (Kp,AG q) are equivalent.

Proof. What remains to be shown is the equivalence of EG¬p and EF ¬q
in Kp. First assume Kp |= EG¬p. Then there exists an infinite initialized
path π ∈ Πp with p 	∈ Lp(π(i)) for all i ≥ 0. Since the number of states of
Sp is finite, there have to exist indices k ≥ l ≥ 0 with π(k + 1) = π(l). Let
π(i) = ((si, ti), xi) for i ≥ 0 and define π′(i) = ((si, t

′
i), xi) with t′i = ⊥ for

0 ≤ i ≤ l and t′i = sl for l < i ≤ k + 1.

Clearly π′ is an initialized legal path of Kp. By definition we have sk+1 =
t′k+1 = sl and xi = 0 for 0 ≤ i ≤ k+ 1, since p 	∈ Lp(π

′(j)) = L(sj) = Lp(π(j))
for 0 ≤ j ≤ k. From (3) we get q 	∈ Lp(π

′(k + 1)) and π′ proves to be a
witness for EF¬q, assuming π′ is extended to an infinite path in the obvious
way. Note that Tp is total since our translation does not introduce dead ends.

For the reverse direction assume EF¬q holds. Without loss of generality
we find an initialized path π ∈ Πp with |π| = k + 1 and π(k + 1) |= ¬q. With
π(i) = ((si, ti), xi) we deduce from (3) that sk+1 = tk+1 and xk+1 = 0. From
the monotonicity of T⊥ in its second state component, we obtain an l with
0 < l ≤ k, such that ⊥ = t0 = . . . = tl and sl = tl+1 = . . . = tk+1. Now we
construct an infinite path π′ with π′(i) = ((s′i, t

′
i), xi) as follows: for 0 ≤ i ≤ k

we simply set π′(i) = π(i). If i > k we define t′i = tk+1, x
′
i = xk+1 and s′i = sl+c

with c = (i − l) mod (k + 1 − l). From the monotonicity of Tp in its second
state component, we have xk+1 = . . . = x0 = 0, which implies si |= ¬p for
0 ≤ i ≤ k. Since these original states determine the non-validity of p for every
π′(i), and π′ is a legal initialized infinite path, it serves as witness for EG¬p.�

4.2 Complexity

Our objective was to enable checking liveness properties with techniques and
tools previously only used for reachability calculation or safety checking. The

176

Biere, Artho, Schuppan

impact of our translations on the complexity for model checking or reachability
calculation is quite reasonable.

As sketched with the example of Fig. 5, the size of a non-canonical symbolic
description in program code, increases only by a small constant factor. The
counter based translation will produce very large counter examples. Therefore
we restrict the discussion to the state recording translation.

In global (explicit) model checking [11] the complexity is governed by the
number of states, which increases quadratically:

|Sp| = 2 · |S⊥| = 2 · |S| · (|S| + 1) = O(|S|2)

In the case of on-the-fly (explicit) model checking [14] only the size of the
reachable state space Rp is of interest. A reachable state (s, t) ∈ R⊥ of K⊥
either contains ⊥ as second component t, or t is reachable in K since only
reachable states are recorded. Therefore R⊥ is bounded by |R| · (|R| + 1).
This bound is tight: a modulo n counter, like the model in Fig. 2 for n = 4,
has |R⊥| = n · (n + 1) reachable states. If n = 4 then every combination of
{0, . . . , 3} × {⊥, 0, . . . 3} can be reached. Further introducing the p-recording
flag at most doubles the number:

|Rp| ≤ 2 · |R⊥| ≤ 2 · |R| · (|R| + 1) = O(|R|2)

Regarding symbolic model checking with BDDs [21] we have two results. First
we relate the size of reduced ordered BDDs for the transition relation of K,
K⊥ and Kp. Assuming S is encoded with n = �log2 |S|� state bits, we can
encode S⊥ with 2n + 1 boolean variables. It is important to interleave the
boolean variables for the first and second component. Otherwise the size of
the BDD for the term (t′ = t∨ (t = ⊥∧ t′ = s)) in (2) may explode. With an
interleaved order it is linear in n with a factor of approx. 11. The factor has
been determined empirically for large state spaces. Thus the size of the BDD
for T⊥ can be bounded by 11 · n the size of the BDD for T by using the fact
from [5] that computing any boolean binary operation on BDDs will produce
a BDD of size that is linear with factor 1 in the size of the argument BDDs.
Finally, the size of the BDD for Tp compared to the size of the BDD for T⊥
may increase by a linear factor in the size of the BDD representing the set of
states in which p holds, which in practice is usually very small.

Similar calculations for the set of initial states show that the size of BDDs
representing Kp can be bound to be linear in the size of the BDDs represent-
ing K, linear in the number of state bits, and linear in the size of the BDD
representing the set of states in which p holds. These static bounds do not say
anything about the size of the BDDs in the fixpoint iterations. To measure the
dynamic complexity we determine bounds on the diameter and radius, which
also serve as bounds on the maximal number of fixpoint iterations. Note that
the counter based translation has a radius at least as large as the number of
states in the original system, which makes traditional symbolic reachability

177

Biere, Artho, Schuppan

analysis impractical even for medium sized problems. One important observa-
tion is that the state recording translation produces a much smaller diameter
dp and radius rp:

Theorem 4.4 dp ≤ 4 · d+ 3 and rp ≤ r + 3 · d+ 3

Proof. Let π ∈ Π⊥ be a finite path with π(i) = (si, ti) and |π| = k. Since
T⊥ is monotonic in the second component we have to distinguish two cases.
If first t0 = . . . = tk, then δ⊥(π(0), π(k)) = δ(s0, sk) ≤ d, since all paths
in K can be extended to legal paths in K⊥ by adding a fixed non changing
second state component. In the second case there exists an l with 0 ≤ l < k
with t0 = . . . = tl = ⊥ and tl+1 = . . . = tk = sl (cf Fig. 4). Now we have
two sub-paths with constant second state component as in the first case and
obtain

δ⊥(π(0), π(k)) ≤ δ(s0, sl) + 1 + δ(sl+1, sk) ≤ 2 · d+ 1

which also subsumes the bound of the first case and thus d⊥ ≤ 2 · d + 1. To
determine the bound for the radius we additionally assume that π is initialized.
Then δ(s0, sl) ≤ r and we obtain r⊥ ≤ r+d+1. With the same reasoning, since
Tp is monotonic in the second state component as well, we derive dp ≤ 2·d⊥+1
and rp ≤ r⊥ + d⊥ + 1. By substitution we derive the desired inequalities. �

Unfortunately, there are examples where r is much smaller than d and
for reachability analysis in Kp we still have to perform more than d fix point
iterations. A modulo n counter as in Fig. 2 without the -1 state becomes such
an example if we allow all states to be initial states. Then we have d = n− 1,
r = 0, but d⊥ = 2 · n − 1 and r⊥ = n, which is already larger than d. The
number of backward iterations necessary to check a liveness property in the
original model could also be very large.

4.3 Fairness and LTL

Our translation is able to incorporate fairness. A fairness constraint is simply
a subset of S. A path π is called fair wrt. one fairness constraint F i ⊆ S iff
some state in F i occurs infinitely often on π. If π is fair, then π is infinite,
written |π| = ∞. Formally we add a fifth component F to a model, where F
is a possibly empty list of fairness constraints F = (F 1, . . . , Fm). Then a path
is fair for K iff it is fair wrt. every F i. The semantics of models with fairness
constraints is defined as in the unfair case, except that all paths are required
to be fair. Bisimulation with fairness is defined by expanding the transition
based definition stated above to whole fair paths as in [12]: the additional
requirement is that for all fair paths π ∈ Π there exists a fair path π′ ∈ Π′

with π ∼ π′, where π ∼ π′ iff π(i) ∼ π′(i) for all i ≥ 0. To handle a fair Kripke
structure K(S, I, T, L, F) we construct Kp(Sp, Ip, Tp, Lp, Fp) where Sp, Ip, Tp,
and Lp are defined as above and F is extended to

Fp = (F 1 × (S ∪ {⊥}) × {0, 1}, . . . , Fm × (S ∪ {⊥}) × {0, 1}).
178

Biere, Artho, Schuppan

We define KF
p = (SF

p , I
F
p , T

F
p , L

F
p) with SF

p = Sp × {0, 1}m and IF
p = Ip ×

{(0, . . . , 0)} by replacing each fairness constraint F i with a state bit that
remembers whether a loop state in F i has been reached. Let LF

p be the
natural extension of Lp as before. Let (s, t, x, v), (s′, t′, x′, v′) ∈ SF

p with
s, s′ ∈ S, t, t′ ∈ S ∪ {⊥}, x, x′ ∈ {0, 1} and v, v′ ∈ {0, 1}m. The transition
relation T F

p is satisfied for (s, t, x, v) and (s′, t′, x′, v′) as current and next state
iff

Tp(((s, t), x) , ((s′, t′), x′)) ∧
∧m

i=1 (v′(i) = v(i) ∨ (t′ 	= ⊥ ∧ s ∈ F i ∧ v′(i) = 1))

which is again monotonic in the new fairness components of the state space.
We further add a new atomic proposition qF with

qF ∈ LF
p (((s, t, x, v)) ⇔ (v(1) = . . . = v(m) = 1) → q ∈ Lp((s, t), x)

where q is defined as for Kp. We can prove a correctness result like before,
now including fairness.

Theorem 4.5 (K,AFp) and (KF
p ,AG qF) are equivalent.

The number of added state bits grows linearly in the number m of fairness
constraints. This directly corresponds to the increase in size of the input for
symbolic model checking. The state space KF

p itself grows exponentially. So
does the diameter and the radius. The approach seems to be feasible, at least
for explicit model checking, only for a small number of fairness constraints.
However, checking AG qF will always find shortest counter examples.

An alternative approach counts the number of fairness constraints satisfied
sofar, similar to the well known translation of generalized Büchi automata
into ordinary Büchi automata. It produces a liveness property with a single
fairness constraint, which in turn is translated into a safety property. This
approach is more space efficient. It requires only logarithmic additional state
bits. However it fails to generate counter example traces of minimal length.
In addition, it is not clear how this binary encoding performs for symbolic
model checking versus the one-hot encoding discussed before.

Since generalized Büchi automata and thus LTL [14] can be translated into
fair Kripke structures, our translation also applies to LTL model checking in
general. Additionally it is possible to derive special translation rules for other
standard LTL operators. For example to handle p1U p2 we use

p1U p2 ≡ (p1 Uweak p2) ∧ Fp2

where the weak until operator p1 Uweak p2 is defined to be valid for a path
iff p1 does not stop to hold before p2 holds or p1 holds along the whole path.
By adding a state bit that remembers whether p2 was fulfilled already, the
weak until can easily be transformed into a simple safety property. Then the

179

Biere, Artho, Schuppan

check true check false counterexample false

n live count safe live count safe live count safe

4 8 (4+ 4) 9 (9+0) 8 (8+0) 5 (4+1) 5 (5+0) 4 (4+0) 7 (3+ 4) 5 (0+5) 4 (0+4)

8 16 (8+ 8) 17(17+0) 16(16+0) 9 (8+1) 9 (9+0) 8 (8+0) 15 (7+ 8) 9 (0+9) 8 (0+8)

12 24(12+12) 25(25+0) 24(24+0) 13(12+1) 13(13+0) 12(12+0) 23(11+12) 13(0+13) 12(0+12)

16 32(16+16) 33(33+0) 32(32+0) 17(16+1) 17(17+0) 16(16+0) 31(15+16) 17(0+17) 16(0+16)

Table 1
Counters

eventuality Fp2 is translated into a safety property as well, with our original
translation. Finally, we check both safety properties simultaneously.

5 Experiments

In this section, we show the results of our translation applied to various exam-
ples, both theoretical and “real world” ones. Each table is divided into three
main parts: the left part, with the iterations needed for the correct model, the
middle part, where the model is incorrect, and the right part, which shows
the iterations needed to compute a counter example for the incorrect model.
The three main parts are further split up into one column for each different
approach: live for the conventional liveness approach, count for the counter
based approach (not used in the FireWire example), and safe for our state
recording translation. For each version, the number of overall, forward, and
reverse iterations is shown.

5.1 Simple Counters

In the case of a simple counter in Table 1 all approaches perform linearly in the
number of iterations wrt. the model size. Computing the counter example,
however, requires nearly twice as many iterations with the live version as
opposed to our method.

For the counters used in Table 2 the desired state n can be reached from
any state in one step. There are only two iterations needed to complete a loop,
and n backward iterations to reach all possible predecessors. With the counter
based approach, n + 1 iterations are required to enumerate enough states,
and another iteration to reach state n. Our approach requires a constant
number of five iterations for a correct model: One iteration to reach all possible
successor states; from those states, a second iteration to reach state n. The
third iteration reaches the initial state 0 again, from which two more iterations
are required to prove the liveness within the loop.

The false example requires two iterations for the loop, and with the live
version, another backward iteration for the initial state as a predecessor. The
counter based approach is very inefficient. The counter example analysis shows
a similar behavior.

180

Biere, Artho, Schuppan

check true check false counterexample false

n live count safe live count safe live count safe

4 6 (2+ 4) 6 (6+0) 5 (5+0) 3 (2+1) 5 (5+0) 2 (2+0) 3 (1+2) 5 (0+5) 2 (0+2)

8 10 (2+ 8) 10 (10+0) 5 (5+0) 3 (2+1) 9 (9+0) 2 (2+0) 3 (1+2) 9 (0+9) 2 (0+2)

12 14 (2+12) 14 (14+0) 5 (5+0) 3 (2+1) 13 (13+0) 2 (2+0) 3 (1+2) 13 (0+13) 2 (0+2)

16 18 (2+16) 18 (18+0) 5 (5+0) 3 (2+1) 17 (17+0) 2 (2+0) 3 (1+2) 17 (0+17) 2 (0+2)

Table 2
Skipping Counters

5.2 IEEE 1394 FireWire – Tree Identify Protocol

IEEE 1394 (FireWire) [16] is a protocol for a serial high-speed bus widely used
to interconnect multimedia devices and PCs. To ensure correct functioning of
the protocol the nodes connected to an IEEE 1394 bus are required to form a
tree. The Tree Identify Protocol is executed each time the bus configuration
changes to verify this condition and to elect a unique leader who has extended
responsibilities in later phases of the protocol. In previous work [25,24] we
have verified several properties of the Tree Identify Protocol with SMV.

The single most important property to be verified in the tree identify
phase is the designation of a leader before the next phase of the protocol is
reached. This property was checked in our experiments for both the original
(correct) version of the model from [24] and a version with a bug preventing
the successful completion of the protocol. In the SMV input language it is
formulated for 2 nodes as follows

AF (node[0].root | node[1].root | timeout | known_problems)

where root, timeout and known problems are state properties. Separate
safety properties are used to ensure that neither timeout nor known problems

have occurred. Once verified these conditions could be removed from the
model and are not included in the performance figures given here.

During the run of the protocol two nodes might be left competing to be-
come root. In this case a sub-protocol is invoked to resolve this situation,
called root contention. Both contending nodes non-deterministically choose
to wait for either a short or a long time before continuing. If the nodes chose
differently one of them will become root. Otherwise the sub-protocol is re-
peated. A fairness condition ensures that the two nodes will make a different
choice at some point.

Most of the steps in the translation process described in Sect. 4 have been
automated. For the translation a flat model is generated with NuSMV [10].
Additional variables are introduced to record the saved state, to represent
the oracle, and to keep track whether each fairness condition has been true
on the loop. Simple liveness properties of the form AF p are also translated
automatically. More complicated properties need to be reformulated by the
user either by using the automata based approach or by simple transformations

181

Biere, Artho, Schuppan

check true check false cex false

n p live safe live safe live safe

2 2 74 (19 + 55) 24 (24 + 0) 34 (19 + 15) 13 (13 + 0) 132 (13 + 119) 13 (0 + 13)

2 3 74 (19 + 55) 24 (24 + 0) 35 (19 + 16) 13 (13 + 0) 132 (13 + 119) 13 (0 + 13)

2 4 78 (19 + 59) 24 (24 + 0) 36 (19 + 17) 13 (13 + 0) 132 (13 + 119) 13 (0 + 13)

3 2 76 (21 + 55) 23 (23 + 0) 36 (21 + 15) 11 (11 + 0) 67 (10 + 57) 11 (0 + 11)

3 3 77 (21 + 56) 23 (23 + 0) 37 (21 + 16) 11 (11 + 0) 67 (10 + 57) 11 (0 + 11)

3 4 77 (21 + 56) 23 (23 + 0) 37 (21 + 16) 11 (11 + 0) 67 (10 + 57) 11 (0 + 11)

4 2 129 (31 + 98) 36 (36 + 0) 52 (31 + 21) 19 (19 + 0) 215 (19 + 196) 19 (0 + 19)

Table 3
Leader election in the Tree Identify Protocol - iterations

check true check + cex false

live safe live safe

n p time memory time memory time memory time memory

2 2 0.85 66941 4.19 397030 1.12 103299 2.64 282859

2 3 1.93 201680 11.07 782574 2.65 215169 6.82 595756

2 4 4.71 443947 28.22 1296088 5.45 402535 16.00 944482

3 2 11.33 699222 39.45 1946866 7.59 718910 12.09 772508

3 3 76.05 3777278 283.07 9578242 53.60 3678676 86.82 4217925

3 4 450.72 29220542 1567.67 31759998 259.51 19588279 554.39 14364650

4 2 357.30 14001693 1376.18 35547502 204.82 12500473 644.18 24864717

Table 4
Leader election in the Tree Identify Protocol

similar to the one we presented for the until operator in Sect. 4.3. Finally, an
improved variable order is generated. To allow for a fair comparison the live
model was also flattened before checking.

We used Cadence SMV [20] on a Pentium III-800 running Linux 2.2.19.
Execution time and memory usage were limited to 1 hour and 1 GB respec-
tively. Since an optimized variable order was provided explicitly, dynamic
reordering had been disabled. In separate runs we checked that dynamic re-
ordering produces comparable orders. Note that, enabling dynamic reordering
would have increased runtimes dramatically.

Configurations with 2 – 4 nodes and 2 – 4 ports were checked. Table 3
shows the number of iterations. Table 4 lists execution time in seconds and
memory usage in peak number of BDD nodes. Combinations of nodes and
ports not shown could not be handled within the given time and memory
bounds.

In each case, the safe version requires much fewer overall iterations than the
live version. Only for the correct model the safe version needs more forward
iterations than the live version. While run time and memory usage for the safe
version of the correct model is up to 6 times higher than for the live version,
the relation improves in the buggy case.

182

Biere, Artho, Schuppan

6 Conclusion

In this paper we presented a translation that allows to check liveness properties
by checking safety properties. Our main contributions can be summarized as
follows:

(i) For commercial or proprietary safety checking tools it may not be feasible
for the user to change the algorithms. Our technique allows to apply such
tools to liveness, which were supposed to check safety properties only.

(ii) The experiments indicate that our technique is comparable with special-
ized algorithms. Additionally we are able to find counter example traces
of minimal length.

(iii) With our translation theoretical results on safety checking can be lifted
to liveness checking. Therefore special treatment of liveness properties
can only be justified by experiments or additional complexity results.

The main open question is how the number of state bits introduced by our
translation can further be reduced. We also want to apply the method to
liveness checking with sequential ATPG and STE.

References

[1] Biere, A., A. Cimatti, E. Clarke and Y. Zhu, Symbolic model checking without
BDDs, in: TACAS, 99.

[2] Biere, A., E. Clarke and Y. Zhu, Multiple state and single state tableaux for
combining local and global model checking, in: Correct System Design (Recent
Insights and Advances), number 1710 in LNCS, 2000.

[3] Boppana, V., S. Rajan, K. Takayama and M. Fujita, Model checking based on
sequential ATPG, in: CAV, 99.

[4] Browne, M., E. Clarke and O. Grumberg, Characterizing finite Kripke structures
in propositional logic, Theoretical Computer Science 59 (1988).

[5] Bryant, R., Graph-based algorithms for boolean function manipulation, IEEE
Transactions on Computers 35 (1986).

[6] Bryant, R. and C.-J. Seger, Formal verification of digital circuits using symbolic
ternary system models, in: CAV, 1990.

[7] Burch, J., E. Clarke, D. Long, K. McMillan and D. Dill, Symbolic model
checking for sequential circuit verification, IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems 13 (1994).

[8] Cabodi, G., P. Camurati and S. Quer, Improved reachability analysis of large
finite state machines, in: ICCAD, 1996.

[9] Chou, C.-T., The mathematical foundation of symbolic trajectory evaluation, in:
CAV, 1999.

183

Biere, Artho, Schuppan

[10] Cimatti, A., E. Clarke, F. Giunchiglia and M. Roveri, NuSMV: a new symbolic
model verifier, in: CAV, 99.

[11] Clarke, E. and A. Emerson, Design and synthesis of synchronization skeletons
using branching time temporal logic, in: IBM Workshop on Logics of Programs,
1981.

[12] Clarke, E., O. Grumberg and D. Peled, “Model Checking,” MIT Press, 1999.

[13] Emerson, A., Temporal and modal logic, in: Handbook Theoretical Computer
Science: Volume B, Formal Methods and Semantics (1995).

[14] Gerth, R., D. Peled, M. Vardi and P. Wolper, Simple on-the-fly automatic
verification of linear temporal logic, in: 15th Workshop on Protocol Specification,
Testing, and Verification (1995).

[15] Henzinger, T., O. Kupferman and S. Qadeer, From pre-historic to post-modern
symbolic model checking, in: CAV, 1998.

[16] IEEE, “IEEE Standard for a High Performance Serial Bus. Std 1394-1995, and
Supplement 1394a-2000,” (1995, 2000).

[17] Iwashita, H. and T. Nakata, CTL model checking based on forward state
traversal, in: ICCAD, 1996.

[18] Kupferman, O. and M. Vardi, Model checking of safety properties, in: CAV,
1999.

[19] Lamport, L., Proving the correctness of multiprocess programs, IEEE
Transactions on Software Engineering 3 (1977).

[20] McMillan, K., Cadence SMV, @
http://www-cad.eecs.berkeley.edu/~kenmcmil/smv.

[21] McMillan, K., “Symbolic Model Checking: An Approach to the State Explosion
Problem,” Kluwer Academic Publishers, 1993.

[22] Niermann, T. and J. Patel, Hitec: A test generation package for sequential
circuits, in: EURODAC, 1991.

[23] Ravi, K. and F. Somenzi, High density reachability analysis, in: ICCAD, 1995.

[24] Schuppan, V. and A. Biere, Verifying the IEEE 1394 FireWire Tree Identify
Protocol with SMV Submitted.

[25] Schuppan, V. and A. Biere, A simple verification of the Tree Identify Protocol
with SMV, in: IEEE 1394 (FireWire) Workshop, 2001.

[26] Seger, C.-J. and R. Bryant, Formal verification by symbolic evaluation of
partially-ordered trajectories, Formal Methods in System Design 6 (1995).

[27] Yang, J. and C.-J. Seger, Introduction to generalized symbolic trajectory
evaluation, in: ICCD, 2001.

184

Hansen, Penczek, Valmari

Stuttering-Insensitive Automata for On-the-fly
Detection of Livelock Properties

Henri Hansen 1, Wojciech Penczek 2, Antti Valmari 3

1,3Tampere University of Technology,
Institute of Software Systems

PO Box 553, FIN-33101 Tampere, FINLAND

2Institute of Computer Science, PAS
Ordona 21, 01-237 Warsaw, POLAND

Abstract

The research examines liveness and progress properties of concurrent systems and
their on-the-fly verification. An alternative formalism to Büchi automata, called
testing automata, is developed. The basic idea of testing automata is to observe
changes in the values of state propositions instead of the values. Therefore, the
testing automata are able to accept only stuttering-insensitive languages. Testing
automata can accept the same stuttering-insensitive languages as (state-labelled)
Büchi automata, and they have at most the same number of states. They are also
more often deterministic. Moreover, on-the-fly verification using testing automata
can often (but not always) use an algorithm performing only one search in the state
space, whereas on-the-fly verification with Büchi automata requires two searches.
Experimental results illustrating the benefits of testing automata are presented.

1 Introduction

In this research we examine liveness and progress properties (see e.g. [11,
Chapter 4.2]) of concurrent systems and their on-the-fly verification. On-the-
fly verification has the significant benefit that the analysis of an erroneous
behaviour is possible when only a fragment of the state space has been gen-
erated. This is widely known, and is supported by the measurements in Sec-
tion 5. The most well-known general-purpose algorithm suitable for on-the-fly

1 Email: hansen@cs.tut.fi
2 Email: penczek@ipipan.waw.pl
3 Email: ava@cs.tut.fi

c©2002 Published by Elsevier Science B. V.

Hansen, Penczek, Valmari

verification is presented in [3]. It is based on a double search of the state space.
The property under inspection is often expressed as a Büchi automaton. From
the point of view of the algorithm, the local state of the Büchi automaton is
a part of the global state, and as such has an impact on the total number of
reachable states.

The basis of this research is the observation that a significant proper subset
of liveness properties can be verified by an alternative on-the-fly algorithm.
The algorithm does only one search in the state space. It is described as
Algorithm 3.4 in [17] but we also present it in Section 3.3. It searches for cycles
that represent non-progress. (Another algorithm is the one in [8, pp. 235–237],
but unlike the algorithm in [17], it requires a double state space search.) When
the verified property can be expressed in a form suitable for the single-search
algorithm, the algorithm has a tendency to find an error sooner than the
algorithm of [3], as the measurements in Section 5 show.

In this research we develop an alternative formalism to Büchi automata,
called testing automata, which makes it possible to use the algorithm of [17]
in many verification tasks. The basic idea of testing automata is to observe
changes in the values of state propositions instead of the values. Because of
this, the testing automata are able to accept only stuttering-insensitive lan-
guages. They can accept the same stuttering-insensitive languages as Büchi
automata. They never need more states than state-labelled Büchi automata.
Deterministic testing automata accept strictly more stuttering-insensitive lan-
guages than Büchi automata.

Many verification researchers find limiting oneself to stuttering-insensitive
languages not a serious disadvantage. It may even be seen as a benefit [5,10].
For example, the results in [13] would have been easier to derive, if the authors
did not have to bother with the fact that even when the language accepted
by a Büchi automaton is stuttering-insensitive, individual local states may
be sensitive to stuttering. Confining to stuttering-insensitive languages also
expands the possibilities to reduce the automaton before use.

In Section 2 Büchi automata and how they are used in verification are
presented. In Section 3 the same is done for testing automata. In Section 4,
the relationship between Büchi automata and testing automata is explored.
Among other things, a construction is given to transform a Büchi automaton
that accepts a stuttering-insensitive language into a testing automaton. In
Section 5 some experimental results are given illustrating the benefits of the
algorithm in [17].

2 Büchi automata

We will use Büchi automata whose states are labelled rather than the transi-
tions. The intended interpretation is that the automaton has a set of proposi-
tions whose truth values depend on the state, and the label of a state indicates
the propositions that evaluate to True in that state. Translations between

186

Hansen, Penczek, Valmari

state-labelled and transition-labelled Büchi automata are straightforward, see
[12].

2.1 Definitions

A Büchi automaton is a 6-tuple

(S, Π, val, ∆, Ŝ, Finf)

where

• S is a finite set. Its elements are called states.

• Π is a finite set. Its elements are called propositions.

• val is a function from S to 2Π. Its elements are called valuations.

• ∆ ⊆ S × S. Its elements are called transitions.

• Ŝ ⊆ S. Its elements are called initial states.

• Finf ⊆ S. Its elements are traditionally called acceptance states but to avoid
confusion later, we call them infinite acceptance states.

From now on, let B = (S, Π, val, ∆, Ŝ, Finf) be a Büchi automaton.

A run of B is an infinite sequence s0s1s2 · · · ∈ Sω such that

• s0 ∈ Ŝ,

• ∀i : (si, si+1) ∈ ∆.

A run is accepting if and only if si ∈ Finf holds for infinitely many values of i.

The language L(B) accepted by the Büchi automaton is the set of infinite
sequences P0P1P2 · · · s.t. there is an accepting run s0s1s2 · · ·, where Pi =
val(si) for i ≥ 0.

We say that a language L is stuttering-insensitive iff P0P1P2 · · · ∈ L ⇔
P i0

0 P i1
1 P i2

2 · · · ∈ L for every i0 > 0, i1 > 0, Here X i denotes a string that
consists of i copies of X. A Büchi automaton is stuttering-insensitive iff the
language it accepts is so.

As we have seen already, for a Büchi automaton B, the language L(B) ⊆
(2Π)ω. For certain purposes it is useful to extend the Büchi automata formal-
ism so that they can accept languages L ⊆ (2Π)ω ∪ (2Π)∗. Therefore, we will
discuss two additional kinds of acceptance states, Ffin ⊆ S and Fdl ⊆ S called
finite and deadlock acceptance states, respectively. Let

(S, Π, val, ∆, Ŝ, Finf , Ffin, Fdl)

be a Büchi automaton extended in this way. A run is defined like above,
except that now it may also be finite.

An infinite sequence P0P1P2 · · · is accepted if at least one of the two con-
ditions below holds:

(i) B has an infinite run s0s1s2 · · · such that ∀i : val(si) = Pi, and s0s1s2 · · ·
187

Hansen, Penczek, Valmari

is accepting in the above-defined sense (i.e. si ∈ Finf for infinitely many
i).

(ii) B has a finite run s0s1s2 · · · sk for some k ≥ 0 such that ∀i ≤ k : val(si) =
Pi, and sk ∈ Ffin.

A finite sequence P0P1P2 · · ·Pn is accepted if at least one of the two con-
ditions below hold:

(iii) B has a finite run s0s1s2 · · · sk, for some k ≤ n such that ∀i ≤ k : val(si) =
Pi, and sk ∈ Ffin.

(iv) B has a finite run s0s1s2 · · · sn such that ∀i ≤ n : val(si) = Pi and
sn ∈ Fdl.

It turns out that the set Ffin does not increase the accepting power of Büchi
automata, but it has other benefits in verification. The Ffin-acceptance can
find counterexamples at least as fast as other methods and detection of such
counterexamples can be trivially integrated to other methods. It is also some-
times easier or more natural to express properties directly using Ffin states
than first encoding them as LTL formulas.

Theorem 2.1 For every Büchi automaton with Ffin 	= ∅ there is a Büchi
automaton with Ffin = ∅ that accepts the same language.

Proof. Let B = (S, Π, val, ∆, Ŝ, Finf , Ffin, Fdl) be a Büchi automaton, with
Ffin 	= ∅. We construct another automaton B′ = (S ′, Π, val′, ∆′, Ŝ ′, F ′

inf , ∅, F ′
dl)

that accepts the same language.

In the construction, we create a clique of states that are all both deadlock
and infinite acceptance states, redirect all transitions leading to a finite ac-
ceptance state into a state of the clique with the same valuation as the finite
acceptance state, and remove all finite acceptance states. This does not affect
runs that do not visit such states, and any run that does is accepting in both
the automata by definition.

• S1 = S − Ffin, S2 = 2Π, and S ′ = S1 ∪ S2.

• ∆1 = ∆ ∩ (S1 × S1), ∆2 = { (s, val(s′)) | (s, s′) ∈ ∆ ∧ s ∈ S1 ∧ s′ ∈ Ffin }
and ∆3 = S2 × S2, and ∆′ = ∆1 ∪ ∆2 ∪ ∆3.

• val′(s) = val(s) whenever s ∈ S1, and val′(P) = P when P ∈ S2.

• Ŝ ′ = (Ŝ ∩ S1) ∪ {P | ∃s ∈ Ffin ∩ Ŝ : val(s) = P }.
• F ′

inf = (Finf ∩ S1) ∪ S2.

• F ′
dl = (Fdl ∩ S1) ∪ S2.

�

The Fdl, on the other hand, is meaningful only when dealing with finite
sequences. In such cases it is necessary.

We say that a Büchi automaton is deterministic iff the following holds:
∀s, s1, s2 ∈ S : ((s, s1) ∈ ∆ ∧ (s, s2) ∈ ∆) ⇒ (val(s1) 	= val(s2) ∨ s1 = s2).

188

Hansen, Penczek, Valmari

2.2 Verification with Büchi automata

We define a system as a tuple (SS, Π, valS, ∆S, ŜS), where SS is a set of states,
Π is a set of propositions, valS : SS −→ 2Π is a function that assigns to each
state of the system a set of propositions, ∆S ⊆ SS×SS is a transition relation,
and ŜS ⊆ SS is a set of initial states.

A Büchi automaton B = (SB, Π, valB, ∆B, ŜB, Finf , Ffin, Fdl), representing
the negation of a tested property, is used in combination with the system.
We consider the product System ‖ B = (S,“→”, Ŝ), where S = {(s, t) |
s ∈ SS ∧ t ∈ SB ∧ valS(s) = valB(t)}, “→” ⊆ S × S with (s, t) → (s′, t′) iff
(s, s′) ∈ ∆S ∧ (t, t′) ∈ ∆B, and Ŝ = S ∩ (ŜS × ŜB).

A state (s, t) ∈ S is called reachable iff there are states (s0, t0), . . . , (sn, tn)
in S such that (s0, t0) → (s1, t1) → · · · → (sn, tn) ∧ (s0, t0) ∈ Ŝ ∧ (s, t) =
(sn, tn).

In on-the-fly verification, we construct only the reachable part of the prod-
uct starting from the initial states. We call this part the state space. Further-
more, we can stop immediately after a counterexample has been established.
This counterexample can be of the following three types:

(i) An infinite sequence of states (s0, t0)(s1, t1) · · · such that (s0, t0) ∈ Ŝ and
∀i ≥ 0 : (si, ti) → (si+1, ti+1) and for infinitely many i ≥ 0: ti ∈ Finf . If
S is finite, this means in practice that a cycle reachable from an initial
state is found where at least one state of Finf occurs.

(ii) A state (s, t) such that it is reachable, t ∈ Fdl, and there is no s′ such
that (s, s′) ∈ ∆S. That is, a deadlock of the system is reachable where
the testing automaton is in a state of Fdl.

(iii) A reachable state (s, t) such that t ∈ Ffin.

Büchi automata that represent the negations of properties can be either
directly built by a system designer or obtained automatically from formulas
of Linear Time Temporal Logic (LTL) [1, Section 9.4]. There is a challenge to
define an algorithm building automata (for LTL formulas) that are as small
as possible, see [7,14,4,6].

The methods aimed at finding counterexamples consist of checking the
non-emptiness of the product System ‖ B. Counterexamples of types (ii) or
(iii) can be found by checking each state that is encountered during a state
space search. There are essentially two methods for finding a counterexample
of type (i). One way to accomplish this is to construct the strongly connected
components of the state space [2] and then to check whether one of the compo-
nents contains an infinite acceptance state. This method is not well-suited for
on-the-fly verification, because strongly connected components often contain
much more states than are needed by the counterexample - it is not unusual
that a strongly connected component contains all reachable states. The other
method consists of two depth-first-searches [3]; the first one determines and
orders the reachable infinite acceptance states, while the second one finds out

189

Hansen, Penczek, Valmari

whether any of the reachable infinite acceptance states is an element of a cycle.

2.3 Heuristics for Büchi automata reduction

Reduction of a Büchi automaton means the construction of a smaller Büchi
automaton that accepts the same language as the original one. Reduction can
save effort by making the state space smaller. Unfortunately, also the opposite
may happen. Consider, for instance, a system and a Büchi automaton, each
of which consists of just a cycle of three states with val(s) = ∅, one of which
is an initial state. The state space has three states. However, if the Büchi
automaton is reduced to a cycle of two states, the state space grows to six
states.

Many reductions for Büchi automata can be obtained from reductions in
finite automata and process algebras. Such reductions are heuristics, and
therefore they usually do not guarantee minimal results. Some of the heuris-
tics work for all Büchi automata (such as the strong bisimulation minimisa-
tion), but for stuttering-insensitive Büchi automata there exist more efficient
heuristics. A detailed discussion of the reductions would be beyond the page
limit of this research, but we introduce some superficially. They are used in
the examples of this research, although details of the computations are not
necessarily shown.

Let (S, Π, val, ∆, Ŝ, Finf , Ffin, Fdl) be a Büchi automaton. The following
heuristics can be used to reduce its size:

• All states and transitions that are not reachable can be discarded. They
can be found in linear time with any elementary graph search algorithm
such as depth first search [2].

• All states and transitions from which no acceptance state is reachable can
be removed. This can be done in linear time by conducting a backwards
search starting from acceptance states.

• All transitions starting from a finite acceptance state can be removed.

• If an infinite acceptance state is not in any cycle, it can be removed from
Finf .

The following heuristics can be used only if the automaton is stuttering-
insensitive:

• Ffin can be replaced by { s ∈ S | ∃s0, . . . , sn ∈ S : s0 = s∧∀i < n : val(si) =
val(si+1)∧ (si, si+1) ∈ ∆∧ sn ∈ Ffin }, that is, stuttering immediately before
entering a finite acceptance state can be ignored. The same applies to Fdl.

3 Testing automata

A testing automaton is a variant of an extended Büchi automaton that “reads”
a sequence in a different way. The important feature of a testing automaton

190

Hansen, Penczek, Valmari

is that it does not detect valuations, but changes of them. Consequently, a
testing automaton can accept only stuttering-insensitive languages.

3.1 Definitions

A testing automaton is a 9-tuple

(S, Π, val, ∆, Ŝ, Finf , Ffin, Fdl, Fll)

where

• S is a finite set. Its elements are called states.

• Π is a finite set. Its elements are called propositions.

• val : Ŝ → 2Π. That is, only initial states are given valuations.

• ∆ ⊆ S × (2Π − {∅}) × S. Its elements are called transitions.

• Ŝ ⊆ S. Its elements are called initial states.

• Finf ⊆ S. Its elements are called infinite acceptance states.

• Ffin ⊆ S. Its elements are called finite acceptance states.

• Fdl ⊆ S. Its elements are called deadlock acceptance states.

• Fll ⊆ S. Its elements are called livelock acceptance states.

A variant of testing automata was defined in [17]. There synchronous commu-
nication via transition labels was used instead of Π an val. Another notion
related to stutter-invariant automata was defined in [5]. The main difference
between these two definitions is in the acceptance criteria; stutter-invariant
automata use infinite acceptance states only.

From now on, let T = (S, Π, val, ∆, Ŝ, Finf , Ffin, Fdl, Fll) be a testing au-
tomaton. Define A ⊕ B as follows: A ⊕ B = (A − B) ∪ (B − A).

The testing automaton does not make a move for every symbol that it
reads. Instead, it moves only when the valuation changes. To discuss this,
we define ∼s0P0s1P1 · · · snPn� iff s0 ∈ Ŝ ∧ val(s0) = P0 ∧ ∀i < n : ((si, Pi ⊕
Pi+1, si+1) ∈ ∆ ∧ Pi 	= Pi+1) ∨ (si = si+1 ∧ Pi = Pi+1). For infinite sequences,
∼s0P0s1P1s2P2 · · ·� is defined analogously.

An infinite sequence P0P1P2 · · · is accepted if at least one of the three
conditions below holds:

(i) There are s0, s1, s2, . . . ∈ S such that
• si ∈ Finf for infinitely many i,
• ∀i : ∃k > i : Pi 	= Pk, and
• ∼s0P0s1P1s2P2 · · ·�.

(ii) There are s0, . . . , sk ∈ S such that
• sk ∈ Fll,
• ∀i ≥ k : Pi = Pk, and
• ∼s0P0s1P1 · · · skPk�.

(iii) There are s0, . . . , sk ∈ S such that

191

Hansen, Penczek, Valmari

• sk ∈ Ffin, and
• ∼s0P0s1P1 · · · skPk�.

A finite sequence P0P1 · · ·Pn is accepted if at least one of the two conditions
below holds:

(iv) There are s0, s1, s2, . . . , sn ∈ S such that
• sn ∈ Fdl, and
• ∼s0P0s1P1 · · · snPn�.

(v) There are s0, s1, s2, . . . , sk ∈ S, for some k ≤ n such that
• sk ∈ Ffin, and
• ∼s0P0s1P1 · · · skPk�.

We say that a testing automaton is deterministic iff the following holds:
∀s, s1, s2 ∈ S : ∀P ⊆ Π : ((s, P, s1) ∈ ∆ ∧ (s, P, s2) ∈ ∆ ⇒ s1 = s2).

3.2 Verification with testing automata

We define a system as in Section 2.2. A testing automaton T = (ST, Π, valT, ∆T,
ŜT, Finf , Ffin, Fdl, Fll) is used in combination with a system, and we consider
the product System ‖ T = (S,“→”, Ŝ), where S = SS × ST, Ŝ = { (s, t) ∈
ŜS× ŜT | valS(s) = valT(t) }, and (s, t) → (s′, t′) iff one of the following holds:

(i) (s, s′) ∈ ∆S ∧ (t, valS(s) ⊕ valS(s
′), t′) ∈ ∆T, or

(ii) (s, s′) ∈ ∆S ∧ t = t′ ∧ valS(s) = valS(s
′).

In verification with testing automata, a counterexample can be one of the
following:

(i) An infinite sequence of states (s0, t0)(s1, t1) · · · such that (s0, t0) ∈ Ŝ and
∀i : (si, ti) → (si+1, ti+1) and for infinitely many i: ti ∈ Finf ∧ val(si) 	=
val(si+1). If S is finite, this means in practice that a cycle is found such
that it is reachable from an initial state and there is at least one change
in proposition values and at least one state (s′, t′) in the cycle where
t′ ∈ Finf .

(ii) An infinite sequence of states (s0, t)(s1, t) · · · such that ∀i : (si, t) →
(si+1, t) and (s0, t) is reachable, and t ∈ Fll. That is, a cycle consisting
of transitions with no propositions change is found where the testing
automaton remains in a state t ∈ Fll.

(iii) A reachable state (s, t) such that t ∈ Fdl and there is no s′ such that
(s, s′) ∈ ∆S. That is, a deadlock of the system is reachable where the
testing automaton is in a state of Fdl.

(iv) A reachable state (s, t) such that t ∈ Ffin.

3.3 An algorithm for livelock detection

The counterexamples of type (ii) in the previous subsection can be detected
with the algorithm originally published in [17]. We present it here only slightly

192

Hansen, Penczek, Valmari

modified for our purpose and call it one-pass algorithm. Notation is the same
as in the previous section.

procedure one-pass((S,“→”, Ŝ))
Work := Ŝ; Found := Ŝ; ∀(sS, sT) ∈ Ŝ : colour((sS, sT)) := white
while Work 	= ∅

choose (sS, sT) ∈ Work; Work := Work − {(sS, sT)}
if sT ∈ Fll then lldet((sS, sT))
else

for each (s′S, s
′
T) such that (sS, sT) → (s′S, s

′
T) do

if (s′S, s
′
T) /∈ Found then

Work := Work ∪ {(s′S, s′T)}
Found := Found ∪ {(s′S, s′T)}
colour((s′S, s

′
T)) := white

end procedure

procedure lldet((sS, sT))
if colour((sS, sT)) = black then return
colour((sS, sT)) := gray
for each (s′S, s

′
T) such that (sS, sT) → (s′S, s

′
T) do

if val(sS) = val(s′S) then
if (s′S, s

′
T) /∈ Found then

Found := Found ∪ {(s′S, s′T)}; colour((s′S, s
′
T)) := white

lldet((s′S, s
′
T))

else if colour((s′S, s
′
T)) = gray then ERROR FOUND!

else lldet((s′S, s
′
T))

else if(s′S, s
′
T) /∈ Found then

Work := Work ∪ {(s′S, s′T)}; Found := Found ∪ {(s′S, s′T)}
colour((s′S, s

′
T)) := white

colour((sS, sT)) := black
return

end procedure

If Work is a stack, the outer search (one-pass) is effectively a DFS and
if Work is a queue, it is a BFS. We do not commit to any particular way of
“choosing” the transitions and the states to be explored. It does tend to have
a significant effect on the way the algorithm behaves and this effect is explored
in Section 5.

3.4 Heuristics for testing automata reduction

All the algorithms in Section 2.3 that do not assume stuttering-insensitivity
apply. The remaining are superfluous. In addition:

• When we are only interested in infinite sequences, if there is a state that is

193

Hansen, Penczek, Valmari

both an infinite and livelock acceptance state and has a local loop for each
P ∈ (2Π − ∅), such a state can be converted into a finite acceptance state.
If we are interested also in finite sequences, then the state must also be a
deadlock acceptance state to begin with.

4 Transformation between Büchi automata and testing
automata

4.1 Construction of a testing automaton from a Büchi automaton

Theorem 4.1 If a Büchi automaton is stuttering-insensitive, then there is a
testing automaton that accepts precisely the same sequences, and has the same
number of states. If the Büchi automaton is deterministic, then the testing
automaton is also deterministic.

Proof. Let B = (S, Π, val, ∆, Ŝ, Finf , Ffin, Fdl) be a stuttering-insensitive Büchi
automaton. We construct a testing automaton T = (S, Π, valT , ∆T , Ŝ, Finf ,
Ffin, Fdl, Fll), where

• valT (s) = val(s), whenever s ∈ Ŝ.

• ∆T = { (s, P, s′) | (s, s′) ∈ ∆ ∧ (P = val(s) ⊕ val(s′)) ∧ P 	= ∅ }.
• Fll = { s ∈ S | ∃s0, s1, . . . ∈ S : s0 = s∧∀i : val(si) = val(si+1)∧ (si, si+1) ∈

∆ ∧ |{ i | si ∈ Finf }| = ∞}. These states can be detected by only taking
into account transitions (s, s′) ∈ ∆ such that val(s) = val(s′) while looking
for cycles that contain an Finf-state, and then taking all states from which
such an Finf-state is reachable via such transitions.

Note first that nondeterminism is not introduced in the construction. To
prove that L(T) = L(B), we take any infinite sequence P0P1P2 · · · ∈ L(B).
Because the language is stuttering-insensitive, we can assume either that ∀i :
Pi 	= Pi+1 or that ∃k : ∀i < k : Pi 	= Pi+1 ∧ ∀i ≥ k : Pi = Pi+1. We see
that by construction, the testing automaton accepts this sequence. In the
case of infinite stuttering, the Fll accepts all the appropriate sequences. Finite
sequences P0P1 · · ·Pn ∈ L(B) are handled in a similar way. Since the testing
automaton ignores stuttering, the inclusion in the other direction should be
obvious. �

A similar result, formulated for stutter-invariant automata, can be found
in [5].

4.2 Construction of a Büchi automaton from a testing automaton

Theorem 4.2 Any testing automaton has a corresponding Büchi automaton
that accepts precisely the same language.

Proof. Let T = (S, Π, val, ∆, Ŝ, Finf , Ffin, Fdl, Fll) be a testing automaton. We
will construct a stuttering-insensitive Büchi automaton (SB, Π, valB, ∆B, ŜB,

194

Hansen, Penczek, Valmari

��� ���

��
��

������

�

��� ���

��
��

������

� ��� ���

��
��
ll
������

�

��� ���

��
��

������
��
��
��
��

�

�

�

��� ���

��
��
inf

������

�

��� ���

��
��
��
��

������
����

				

��
��

� � ��� ���

��
��
inf
ll
������

�

��� ���

��
��
��
��

������

�

Fig. 1. The construction of a Büchi automaton from a testing automaton

FB
inf , FB

fin, F
B
dl). For clarity, we first construct an intermediate testing automa-

ton (S ′, Π, val′, ∆′, Ŝ ′, F ′
inf , F

′
fin, F

′
dl, F

′
ll) such that the values of the propositions

in the states are unique.

• Let S ′ = S × 2Π.

• For each s ∈ Ŝ, put (s, val(s)) in Ŝ ′.
• val′((s, P)) = P for s ∈ Ŝ ′.
• ∆′ is constructed so that whenever (s, P, s′) ∈ ∆, we add ((s,Q), P, (s′, Q⊕

P)) into ∆′ for each Q ∈ 2Π.

• For each set of acceptance states Fx, F ′
x = Fx × 2Π.

Only the reachable part of this intermediate testing automaton needs to be
considered.

The second stage of the construction consists of transforming each state
depending on whether it is a member of Finf and/or Fll. These transformations
are shown in Figure 1. The value of function val of a state (s, P) is just P .
States retain their status as an initial, finite or deadlock acceptance state. The
“secondary” states introduced in Figure 1 inherit their val values and finite
or deadlock acceptance status from their primary states, and are not initial
states. �

When an automaton is obtained according to the construction in this proof
or the one in Section 4.1, it can often be reduced using the heuristics of
Section 2.3 or 3.4.

Theorem 4.3 There is a deterministic testing automaton such that no deter-
ministic Büchi automaton accepts precisely the same language.

Proof. Consider the language L = ({P}|∅)∗{P}ω. It is known that it is not
accepted by a deterministic Büchi automaton [15]. A deterministic testing
automaton accepting this language is shown in Figure 2. �

However, this result turns out coincidental rather than fundamental: there
is also a nondeterministic testing automaton such that no deterministic testing
automaton accepts precisely the same sequences.

195

Hansen, Penczek, Valmari

��� 	 �p 	

��

TRUE p

���

���
��
��
p ��

��
p�

��
��
¬p

�

���

�

�

���
p

�¬p

��
��
ll

��
��p p��

Fig. 2. A transition-labelled and state-labelled Büchi automaton and a testing
automaton for the property ¬��p.

5 On-the-fly verification experiments

We compared the algorithm in [3] (from now on just the CVWY-algorithm)
to the algorithm in [17], which we call just one-pass algorithm. For our exper-
iments, we have verified the property ¬��p. This property yields a testing
automaton that has an ll-state but no inf-states, so the one-pass algorithm ap-
plies. Two corresponding Büchi automata and a testing automaton are given
in Figure 2. The testing automaton is obtained from the state-labelled Büchi
automaton by first using the construction in the proof of Theorem 4.1, and
then dropping the unreachable inf-state.

It is easy to compare the performance of the two algorithms when the
system works according to the specification, i.e., no counterexample is found.
In that case both the algorithms construct the whole state space. In addition,
the CVWY-algorithm duplicates some of the states.

A theoretical comparison in the case when an error is actually found is
much harder, because the effects of the synchronisation of the system and the
automaton are complicated, as it was discussed in Section 2.3. The goal is in
any case to produce as few states as possible before finding the error.

Various aspects must be considered when implementing these algorithms.
If the incorrect part of the state space is investigated after all other parts, then,
of course, the error is found late. Thus the order in which the transitions of
the system are investigated may have a significant effect on the behaviour of
the algorithms. This order may be affected by the way in which the system is
modelled and represented. The implementation details of the algorithm may
also turn out to have a formidable impact on the behavior. For example, the
depth-first search has a non-recursive implementation where pointers to all
the successor states of a state are put on the stack in one batch, but these
states are not marked as found at this stage. The stack may contain several
pointers to the same state, and the state is marked as found when a pointer
to it is popped. This implementation scans the transitions in the opposite
direction from the usual recursive implementation of the depth-first search.

In these experiments a total of eight implementations were studied, labelled
here with letters from C to J. The meaning of the letters is shown in Table 1.
“Error First” means that in the search, the acceptance state is searched first.
“Forward” and “Backward” refer to the order in which the transitions of the

196

Hansen, Penczek, Valmari

one-pass CVWY

BFS DFS Error first Error last

Forward C E G H

Reverse D F I J

Table 1
Implementations of algorithms

Alg. ≥ 10000 ≥ 1000 ≥ 100 total

J 0 5 22 30

I 1 11 28 30

H 0 8 15 30

G 1 13 23 30

F 2 11 16 30

E 0 4 10 30

D 0 5 19 30

C 0 5 20 30

Table 2
Measurement results for the token ring (53856 states)

system are explored.

Ten experiments were made with the famous ten dining philosophers’ sys-
tem. The property was “philosopher i cannot starve in the state where she
has one chop stick and is waiting for the other”, where i ranged from 1 to 10.

Thirty experiments were made with an artificially ’broken’ token-ring sys-
tem of six servers. A comprehensive description of the token-ring system can
be found in [16]. It consists of servers and clients, where the servers are or-
ganised in a ring. There is exactly one token, and a server serves a client only
when it has the token. A request for the token is passed to the left in the
ring and the token is passed to the right. The original token ring guarantees
eventual access. The system we study here has such a flaw that the token
may sometimes be passed in the wrong direction, introducing the possibility
of starvation due to a livelock. Only the servers were included in the model
and they had been minimised first. Five possible starvation states were tried
for each of the six stations.

Twelve experiments were made with Fischer’s mutual exclusion system [9,
p. 2] with 12 servers. Each server was monitored for starvation while waiting
for access to the critical section.

197

Hansen, Penczek, Valmari

Alg. ≥ 10000 ≥ 1000 ≥ 100 total

J 0 4 7 10

I 1 4 10 10

H 0 4 7 10

G 1 4 10 10

F 2 4 8 10

E 2 4 7 10

D 0 0 1 10

C 0 0 1 10

Table 3
Measurement results for dining philosophers (59048 states)

Alg. ≥ 10000 ≥ 1000 ≥ 100 total

J 2 12 12 12

I 2 12 12 12

H 2 12 12 12

G 2 12 12 12

F 3 6 9 12

E 3 6 9 12

D 0 0 4 12

C 0 0 4 12

Table 4
Measurement results for Fischer’s mutex (49153 states)

The number of states generated before detecting the illegal property was
recorded. Tables 2, 3 and 4 show how many of these test runs resulted in at
least 10 000 states, at least 1000 states, and at least 100 states to be generated.
It is easy to notice that for all the three systems, the implementations C, D,
E, and F are the most effective with C & D outperforming the others. The
main advantage in the experimental results is shown for Fischer’s mutual
exclusion, where the test runs of C & D never generated more than 1000
states, whereas the test runs for G, H, I, and K resulted always in more than
1000 and two times in more than 10 000 states. For dining philosophers C &
D generate more than 100 states (but less than 1000) only once, whereas the

198

Hansen, Penczek, Valmari

other implementations generate four times more than 1000 states and at least
seven times more than 100 states.

6 Conclusions

In this research we demonstrated with measurements that on-the-fly livelock
detection with the algorithm of [17] often outperforms the algorithm of [3],
and, to benefit from this observation, we developed the notion of a testing
automaton. Due to the way a testing automaton observes the system, it is
insensitive to stuttering. We gave constructions for transforming a stuttering-
insensitive Büchi automaton to a testing automaton that accepts the same
language and vice versa, and showed that a testing automaton can be deter-
ministic more often than the Büchi automaton.

Of course, a testing automaton can benefit from the one-pass algorithm
only if it contains livelock acceptance states. Even when it does not, Theo-
rem 4.1 guarantees that a minimal testing automaton for a property can have
fewer but cannot have more states than a minimal state-labelled Büchi au-
tomaton for the same property. However, one must take into account that
reducing the number of states of a Büchi or testing automaton does not nec-
essarily reduce the size of the state space – actually the opposite may happen.
Because the size of the state space is more important, one should concen-
trate on it, and not worry too much about the size of the Büchi or testing
automaton.

The algorithms in [17] and [3] disagree on the order in which the state
space should be investigated, and thus cannot be immediately integrated.
This causes a problem for the on-the-fly verification with testing automata
that contain both livelock and infinite acceptance states. One, albeit not
ideal, possibility is to use a triple state space search, where the main and
secondary searches would be as in the CVWY-algorithm, and the main search
would invoke the third level similarly to the “magic bits” in [8, pp. 235–237].

Testing automata are at their best when Π, the set of propositions, is small.
In some cases a testing automaton must remember truth values of propositions
in its states, making the number of states grow exponentially in the size of
Π. This does not, however, directly make the size of the state space grow,
because each state of the system specifies unique values for the propositions,
and thus picks only one of the alternative testing automaton states as its pair.

Acknowledgements

The authors would like to thank Maciej Szreter for his help in obtaining the
experimental results for Fischer’s mutual exclusion algorithm.

199

Hansen, Penczek, Valmari

References

[1] Clarke, E., Grumberg, O., and Peled, D.: Model checking, MIT Press, 1999.

[2] Cormen, T.H., Leiserson, C.E., and Rivest, R.L.: Introduction to algorithms,
MIT Press,1990.

[3] Courcoubetis, C., Vardi, M., Wolper, P., and Yannakakis, M.: “Memory-efficient
algorithms for the verification of temporal properties”, Formal Methods in
System Design, vol. 1., pp. 275–288, 1992.

[4] Etessami, K. and Holzmann, G.: “Optimizing Büchi Automata”, in Proc. of
CONCUR’00, LNCS 1877, 2000.

[5] Etessami, K.: “Stutter-invariant Languages, ω-Automata, and Temporal
Logic”, in Proc. of CAV’99, pp. 236–248, LNCS 1633, 1999.

[6] Gastin, P. and Oddoux, D.: “Fast LTL to Büchi Automata Translation”, in
Proc. of CAV’01, pp. 53–65, 2001.

[7] Gerth, R., Peled, D., Vardi, M., and Wolper, P.: “Simple on-the-fly automatic
verification of linear temporal logic”, in Proc. of PSTV’95, pp. 3–18, 1995.

[8] Holzmann, G: Design and Validation of Computer Protocols, Prentice-Hall 1991.

[9] Lamport, L.: “A fast mutual exclusion algorithm”, ACM Transactions on
Computer Systems, 5(1): pp. 1–11, 1987.

[10] Lamport, L.: “What good is temporal logic.”. Proc. IFIP 9th World Congress,
R.E.A. Mason (editor), North-Holland, pp 657 – 668, 1983.

[11] Manna, Z. and Pnueli, A.: The Temporal Logic of Reactive and Concurrent
Systems, Springer-Verlag 1991.

[12] Peled, D.: “Combining partial order reductions with on-the-fly model-checking”,
Formal Methods in System Design 8, pp. 39–64, 1996.

[13] Peled, D., Valmari, A. and Kokkarinen, I.: “Relaxed Visibility Enhances Partial
Order Reduction”, Formal Methods in System Design, 19, pp. 275–289, 2001.

[14] Somenzi, F. and Bloem, R.: “Efficient Buchi Automata form LTL formulae”, in
Proc. of CAV’00, LNCS 1855, pp. 247-263, 2000.

[15] Thomas, W.: “Languages, Automata, and Logic”, in Handbook of Formal
Languages, eds. G. Rozenberg and A. Salomaa, Springer-Verlag, pp. 389–455,
1997.

[16] Valmari, A.: “Composition and Abstraction”, Cassez, F., Jard, C., Rozoy, B.
& Ryan, M. (eds.): Modelling and Verification of Parallel Processes, LNCS
Tutorials, Lecture Notes in Computer Science 2067, pp. 58–99, Springer-Verlag
2001.

[17] Valmari, A.: “On-the-fly Verification with Stubborn Sets”. Proc. Computer-
Aided Verification (CAV) ’93, Lecture Notes in Computer Science 697, pp. 397–
408, Springer-Verlag 1993.

200

Valmari, Virtanen, Puhakka

Context-Sensitive Visibility

Antti Valmari 1, Heikki Virtanen 2 and Antti Puhakka 3

Institute of Software Systems
Tampere University of Technology

Tampere, Finland

Abstract

An improvement to the so-called visual verification approach is presented. Visual
verification is a method for checking the correctness of the behaviour of a reactive or
concurrent system. It shares a great deal of common ground with ordinary formal
state space verification, but is more user-friendly. This is because the user does not
need to specify in detail the properties that the system must satisfy to be correct.
Instead, the user only lists the atomic actions that are relevant for the property.
Computer tools are used to obtain a graphical representation which is a summary
of all possible alternative behaviours of the system, and the user then analyses the
result. The improvement presented in this article allows the user to pick a region
of the graphical representation and investigate it in more detail, without being
overwhelmed by the details outside the region. The improvement is illustrated by
analysing the livelocks in a model of the alternating bit protocol.

1 Introduction

In order to improve the quality of concurrent and reactive systems, in partic-
ular for safety-critical applications, several formal verification methods have
been developed for ensuring the correctness of the behaviour of the system.
Formal verification consists of checking that a formal model of the system
satisfies a formal requirement specification according to some mathematically
defined notion of “to satisfy”.

Because checking satisfaction is mathematically challenging and therefore
a significant burden for the system designer, verification researchers have tried
to automate it as much as possible. Unfortunately, verification is demanding
also computationally. Fortunately, with a number of ingenious techniques the
researchers have been able to develop verification algorithms and tools that

1 Email: ava@cs.tut.fi
2 Email: hvi@cs.tut.fi
3 Email: anpu@cs.tut.fi

c©2002 Published by Elsevier Science B. V.

Valmari, Virtanen, Puhakka

are capable of handling many verification tasks of practical significance. (An
extensive survey of formal verification, its fundamental performance problem
and enhanced verification algorithms is presented in [12].)

With an automated verification method, it suffices that the system devel-
oper submits a formal model of the system and the requirement specification.
However, in many cases it is very difficult to present a comprehensive require-
ment specification. A great difficulty here is that one should be able to think
a priori of all possible things that the system might do wrong. This means
that it is difficult to determine beforehand all the requirements that should
be made. On the other hand, if an important requirement is accidentally
forgotten, then a badly incorrect system may pass formal verification.

These problems with requirement specifications led to the development
of an alternative approach called visual verification [16]. Visual verification
is based on certain theories and algorithms originally developed for ordinary
verification, namely the Communicating Sequential Processes (CSP) [5,11] and
its descendant Chaos-Free Failures Divergences (CFFD) Semantics [17], but
these are applied in a slightly different way.

In visual verification, to check a behavioural property of the system, the
property needs not be specified in detail — it suffices that the actions (that is,
operations, or execution steps) of the system that are relevant for the property
are pointed out. The chosen actions are called visible actions. Then computer
tools produce a graphical representation of the behaviour of the system ab-
stracted such that only the visible actions, their relations to each other, and
some information for detecting deadlocks and livelocks are shown. It is im-
portant to notice that the representation does not describe just one execution
of the system, but all alternative executions simultaneously, although with a
great deal of detail left out. The user analyses this representation against the
expectations that the user has regarding the behaviour of the system.

In our experience, behavioural properties are often easy to check in this
way without the burden of specifying the property formally beforehand. What
is more, an attempt to fully understand the graphical representation some-
times reveals an error against a necessary correctness property that the user
did not even think of, and would thus not have included in the requirement
specification. Section 4.2 contains an example of this.

Therefore, although visual verification is perhaps not verification in the
strictest sense of the word, in practice it very often produces results that are
at least as reliable and sometimes more reliable than with ordinary verification.
Examples of the use of visual verification in the development of communication
protocols have been given in [7,13,8].

An example of a different kind of visualisation in verification is given in
[3]. There, telephone services are specified with graphical diagrams. A model
checker is used to find violations of constraints in these diagrams, and the
relevant parts of the violating paths are shown to the user.

Nothing in this world is perfect. The main drawback of visual verifica-

202

Valmari, Virtanen, Puhakka

tion — in addition to the performance problems that hamper all automatic
verification — is that unless the number of the visible actions is kept small,
the graphical representation of the behaviour becomes too big for the user to
comprehend. As was pointed out in [16], the size of the graphical represen-
tation depends crucially on the chosen semantics. The CFFD semantics is
optimal (in a certain well-defined sense) for analysing livelocks, deadlocks and
illegal sequences of visible actions. This has contributed to the fact that we
have been able to apply visual verification to interesting tasks, as discussed
above. However, the need for methods of obtaining more useful information
with smaller graphical representations is still obvious.

In this article we develop one such method: context-sensitively visible ac-
tions. Our new method is applicable in a situation where the user has detected
something strange in the behaviour, and wants to investigate the peculiar part
in more detail. More details can be obtained by declaring more actions visible,
but then the graphical representation easily grows too big. Context-sensitive
visibility makes it possible to declare that an action is visible in the peculiar
part and nowhere else. (“Nowhere else” is not precisely true here, but this
issue can be clarified only after presenting the theory.) In this way the user
can investigate the peculiar part in great detail without being overwhelmed
by the details of uninteresting parts of the behaviour of the system.

In Section 2 we recall the background theory underlying this article. Sec-
tion 3 introduces visual verification and illustrates it with the aid of an ex-
ample. Use of our new method is illustrated in Section 4, and its theory and
implementation are discussed in Section 5.

2 Background Theory

2.1 Labelled transition system

A labelled transition system (LTS) is a state-machine-like representation of the
behaviour of a system or its component process. The system interacts with
its environment by executing visible actions. The system may also execute
invisible actions that the environment cannot directly observe. The symbol
“τ” has been reserved to denote all invisible actions.

Definition 2.1 A labelled transition system is a quadruple (S, Σ, ∆, ŝ), where

• S is the set of states,

• Σ is the alphabet, that is, the set of the visible actions ; it is assumed that
τ /∈ Σ,

• ∆ ⊆ S × (Σ ∪ {τ}) × S is the set of transitions, and

• ŝ ∈ S is the initial state.

If L is an LTS, then its components are denoted with SL, ΣL, ∆L and ŝL.

Example 2.2 Figure 1 shows four LTSs, Sender, Receiver, Data channel, and

203

Valmari, Virtanen, Puhakka

���
Sender

� �send

�

�
ra1

��
���

τ

��
�
��� sd1

�
��
���

sd0

�

	

ra0

��
��� τ

�
send
���Ack channel

��
���

sa0 �
��

sa1

�
�������

lose a
�

���

ra1
�
�������

lose a
�
���

ra0

���Data channel �
�

���

sd0 �
���

sd1

��������
lose d

�
���

rd1��
������
lose d

�
��

rd0

���
Receiver

� �rd0

��
���

rd1

��
�
��� sa1

�

�
rec

�

	

rec

�
��
���

sa0

�
 rd1 ��
��� rd0

Fig. 1. The LTSs of the alternating bit protocol.

Ack channel. Together these LTSs comprise a model of the well-known al-
ternating bit protocol of [4]. The purpose of the protocol is to implement a
reliable data transmission link given unreliable channels. Our model covers
only the logic of the protocol, and omits the payload data that is transported.
The LTSs Sender and Receiver model the actual protocol, and the other two
LTSs model the channels.

Sender first receives a sending request from the customer by executing a
send-transition. Then it sends a data message augmented with the bit “0”
(sd0) to Receiver through Data channel, and starts to wait for an acknowl-
edgement (ra0). After receiving the acknowledgement, Sender is ready for the
transmission of the next data message, this time using “1” as the value of the
alternating bit. If the acknowledgement does not arrive or arrives too slowly,
Sender makes a timeout with the invisible τ -transition, and sends sd0 another
time. Sender may send sd0 even a third time and, indeed, any number of times.

Receiver declares new messages with rec and sends an acknowledgement
for all messages. The channel processes Data channel and Ack channel take a
message and then either deliver it to the other side, or dispose of the message
via the action lose d or lose a. �

2.2 LTS operators

LTSs may be composed together to construct subsystems and systems. The
most important operators for this are parallel composition “ ‖ ” and hiding.
(For more operators, see e.g. [2,5,11,17].)

Definition 2.3 [Parallel composition] Let L1 = (S1, Σ1, ∆1, ŝ1), . . . , Ln =
(Sn, Σn, ∆n, ŝn) be LTSs. The parallel composition of L1, . . . , Ln is the LTS
L1 ‖ · · · ‖ Ln = (S, Σ, ∆, ŝ) such that Σ = Σ1 ∪ · · · ∪ Σn and ŝ = (ŝ1, . . . , ŝn),
and S and ∆ are defined as the smallest sets such that the following hold.

• Each s ∈ S is an n-tuple s = (s1, . . . , sn) such that s1 ∈ S1 ∧ · · · ∧ sn ∈ Sn.

• ŝ ∈ S.

• Let (s1, . . . , sn) ∈ S. If and only if either
· a = τ and ∃i, 1 ≤ i ≤ n : (si, τ, s

′
i) ∈ ∆i ∧

∀j, 1 ≤ j ≤ n : (j
= i ⇒ s′j = sj), or
· a ∈ Σ and ∀i, 1 ≤ i ≤ n : (a ∈ Σi ∧ (si, a, s′i) ∈ ∆i) ∨ (a /∈ Σi ∧ s′i = si)

204

Valmari, Virtanen, Puhakka

�
�

�
�Ack channel

�
�

�
��

ra0
ra1

�
�

�
��

�
�

�
�Data channel

�
��

�
��rd0 rd1

�
�

�
�Sender

�
��

�
��

sd0 sd1

send

�
�

�
�Receiver

�
�

�
��

�
�

�
��

sa0 sa1

rec

Fig. 2. Subprocesses of the alternating bit protocol and their common actions.

then (s′1, . . . , s
′
n) ∈ S and ((s1, . . . , sn), a, (s′1, . . . , s

′
n)) ∈ ∆.

In less formal terms, visible transitions synchronise as determined by the
alphabets of the components, and invisible transitions are always executed by
one component at a time.

Definition 2.4 [Hiding] Let L = (S, Σ, ∆, ŝ) be an LTS and A ⊆ Σ. Then
hide A in L is the LTS (S, Σ′, ∆′, ŝ), where Σ′ = Σ − A and ∆′ =
{ (s, a, s′) | (s, a, s′) ∈ ∆ ∧ a /∈ A } ∪ { (s, τ, s′) | ∃a ∈ A : (s, a, s′) ∈ ∆ }.

In other words, hide just changes to τ the labels of any transitions labelled
with an element of A. For simplicity, if A = {a1, . . . , an}, we allow writing
hide a1, . . . , an in L instead of hide {a1, . . . , an} in L.

Example 2.5 The structure of the alternating bit protocol is shown in Fig-
ure 2. The protocol can now be defined as

hide H in (Sender ‖ Receiver ‖ Data channel ‖ Ack channel),

where

H = { sd0, sd1, rd0, rd1, sa0, sa1, ra0, ra1, lose d, lose a }.
�

We will need later in this article also the less common multiple renaming
operator L[A/a]. Here, L is an LTS, a ∈ ΣL, and A is just any nonempty
set of visible action names. The operator replaces each a-transition with |A|
alternative transitions, one for each member of A. The alphabet is changed
accordingly. It is a special case of a more general multiple renaming operator
L[A1/a1, . . . , Ak/ak] that has been discussed at least in [15].

Definition 2.6 [Multiple renaming] Let L = (S, Σ, ∆, ŝ) be an LTS, a ∈ Σ,
and τ /∈ A
= ∅. Then L[A/a] is the LTS (S, Σ′, ∆′, ŝ), where Σ′ = (Σ−{a})∪A
and ∆′ = { (s, b, s′) | (s, b, s′) ∈ ∆∧b
= a }∪{ (s, b, s′) | (s, a, s′) ∈ ∆∧b ∈ A }.

2.3 Strong Bisimilarity

For technical reasons the well-known notion of strong bisimilarity [10] will be
needed.

205

Valmari, Virtanen, Puhakka

Definition 2.7 The LTSs L1 = (S1, Σ, ∆1, ŝ1) and L2 = (S2, Σ, ∆2, ŝ2) that
have the same alphabet are (strongly) bisimilar, denoted in this article by
L1 �sb L2, if and only if there is a relation “∼” ⊆ S1 × S2 such that the
following hold for every s1, s

′
1 ∈ S1, s2, s

′
2 ∈ S2, and a ∈ Σ ∪ {τ}:

(i) ŝ1 ∼ ŝ2.

(ii) If s1 ∼ s2 and (s1, a, s′1) ∈ ∆1,
then there is s such that s′1 ∼ s and (s2, a, s) ∈ ∆2.

(iii) If s1 ∼ s2 and (s2, a, s′2) ∈ ∆2,
then there is s such that s ∼ s′2 and (s1, a, s) ∈ ∆1.

The relation “∼” is called strong bisimulation.

2.4 CFFD-Semantics

The notation s−a1a2 · · · an→ s′ means that the system has a finite execution
(that is, a path in the LTS) that starts at s and leads to s′ such that the se-
quence of the labels of the transitions along the path is precisely a1, a2, . . . , an.
If we want to say that there is some s′ such that s−a1a2 · · · an→ s′ but we do
not want to specify any such s′, we write s−a1a2 · · · an→ . The existence of an
infinite execution from s with the infinite sequence a1, a2, a3, . . . of transition
labels is denoted with s −a1a2a3 · · ·→ . For instance, Data channel has the
infinite execution ŝData channel −sd0 rd0 sd1 lose d sd0 · · ·→ .

If a1, a2, . . . , an are visible actions, the notation s =a1a2 · · · an⇒ s′ means
that there are m ≥ n and b1, b2, . . . , bm such that s −b1b2 · · · bm→ s′ and
the result of removing all τs from b1b2 · · · bm is a1a2 · · · an. The notations
s=a1a2 · · · an⇒ and s=a1a2a3 · · ·⇒ are defined in an analogous way. We say
that a1a2 · · · an is a trace of the system if and only if ŝ =a1a2 · · · an⇒ , and
a1a2a3 · · · is an infinite trace if and only if ŝ =a1a2a3 · · ·⇒ .

We define a deadlock state as any state without outgoing transitions. Live-
locks may be modelled with the concept of divergence. A state s is divergent,
if and only if an infinite sequence of τ -transitions can be executed from it.
The trace a1a2 · · · an is a divergence trace, if and only if there is a divergent
state s such that ŝ =a1a2 · · · an⇒ s.

Analogously, we could define deadlock traces as those traces that can lead
to a deadlock state. However, we want our equivalences to be congruences,
which means that a system is guaranteed to remain equivalent when any of its
components is replaced with an equivalent component. The deadlock traces
do not induce a congruence with respect to the parallel composition operator,
and therefore we need the more general notion of stable failures. A stable
failure is a pair (a1a2 · · · an, {b1, b2, . . . , bm}) such that there is a state s such
that ŝ =a1a2 · · · an⇒ s, and s −b→ is not true for any b ∈ {b1, b2, . . . , bm, τ}.

The sets of traces, infinite traces, divergence traces and stable failures of
an LTS L are denoted with Tr(L), Inftr(L), Divtr(L) and Sfail(L).

Definition 2.8 The Chaos-free failures divergences (CFFD) semantics [17] of

206

Valmari, Virtanen, Puhakka

L is the triple (Sfail(L), Divtr(L), Inftr(L)). 4 Two LTSs are CFFD-equivalent
if and only if they have the same CFFD-semantics and the same set of visible
actions.

The set Tr(L) is not included in the triple, because it can be uniquely
determined from the other components due to the formula Tr(L) = Divtr(L)∪
{σ | (σ, ∅) ∈ Sfail(L) } [17]. The set of deadlock traces is {σ | (σ, Σ) ∈
Sfail(L) }

CFFD-equivalence is a congruence with respect to parallel composition,
hiding and multiple renaming. Furthermore, strong bisimilarity implies CFFD-
equivalence; that is, L1 �sb L2 ⇒ L1 �CFFD L2.

CFFD-semantics contains enough information about the behaviour of the
system for the detection of deadlocks, livelocks and illegal actions or sequences
of actions, and for listing the traces after which the deadlock etc. may oc-
cur. What is more, it was shown in [6] that as long as the LTSs are finite,
any semantic model that (1) contains enough information for these tasks and
(2) induces a congruence with respect to the parallel composition and hiding
operators, must contain at least the same information as CFFD-semantics.
This means that CFFD-semantics does not contain more information than is
needed. This is very important for visual verification, because it helps to keep
the graphical representations small.

In the absence of livelocks, CFFD-semantics coincides with the well-known
CSP-semantics of Brookes, Hoare and Roscoe [5,11]. In the presence of live-
locks, CFFD-semantics contains more information than CSP-semantics. In
CSP-semantics, livelocks are considered as catastrophic modes of behaviour
(and called “chaos”). Absolutely no information is preserved about the be-
haviour of a system that has passed through a potentially livelocking trace.
This feature makes CSP-semantics less useful for the verification of a number
of systems, including the one used as an example in this article.

3 Visual Verification

We illustrate visual verification with the aid of the alternating bit protocol
that was shown in Figures 1 and 2. As we mentioned in Section 2.2, the
system as a whole is defined by the formula

hide H in (Sender ‖ Receiver ‖ Data channel ‖ Ack channel)

where H is the set of actions that we want to consider as internal to the
protocol.

ARA [14] is a tool that can be used, among other things, for computing
parallel composition and hiding of LTSs, and for reducing LTSs such that

4 It was originally also required that if one of the systems has a τ -transition that starts
in the initial state, then also the other should have. This requirement is needed to ensure
the congruence property with respect to the so-called choice operator that is common in
process algebras, but not used in this article.

207

Valmari, Virtanen, Puhakka

���

����������
τ

����� τ

� �send ���������� rec

��
��� τ

Fig. 3. The externally observable behaviour of the alternating bit protocol.

CFFD-semantics is preserved. ARA contains also a visualisation tool that
can show small LTSs on a computer screen graphically in a fairly readable
(albeit not always elegant) manner. When ARA was told to construct an
LTS of the above model of the alternating bit protocol and then reduce and
visualise it, the result was — in essence — Figure 3. We have redrawn the
figures for this article, because the output of ARA is unsuitable for printing:
it relies on colours and consumes space uneconomically.

We can make a number of observations from Figure 3. First, send and rec
alternate, meaning that a message cannot be delivered before a message is
sent, and the protocol does not accept a new message for transmission before
the previous one has been delivered. Because each state has at least one
output transition, we also see that the protocol cannot deadlock. 5

On the other hand, the two τ -loops in the figure imply that the protocol
can livelock. Since the channels are unreliable, and Sender contains no upper
limit to the number of times it tries to transmit a message if it receives no
acknowledgement, it is natural to guess that the livelocks are due to systematic
loss of messages in the channels. Regarding the correctness of the protocol,
this explanation of the livelocks would be acceptable, because no protocol
can deliver messages if the channels are totally broken. Unfortunately, we do
not yet know if it is the only reason for the livelocks (or even a reason at
all); perhaps there is also a genuine error that causes livelocks even when the
channels work well?

We can, fortunately, check this. Each “acceptable” livelock contains in-
finitely many losses of messages, so livelocks should go away if we make lose d
and lose a visible, that is, remove them from H. The result of doing this is
shown in Figure 4. This LTS contains no τ -loops, so the protocol does not
have illegal livelocks. Figure 4 is, however, quite complicated. The reason is
that now that lose d and lose a are visible, all their possible orderings relative
to each other and to send and rec are shown, although we need them only
where the livelocks were in the previous picture. The next section presents a
new method that solves this problem.

5 The presence of a τ -transition from the end state of the rec-transition to the initial
state, and the absence of a similar transition at the start state of the rec-transition, are
explained by the fact that Sender only stops sending data messages after it receives an
acknowledgement. On the other hand, it cannot receive an acknowledgement before the
rec-transition, because Receiver sends it only after the rec-transition.

208

Valmari, Virtanen, Puhakka

��� � send � � rec �

lose d
�� �� � τ �

τ

	

�
lose d

���������

lose a

���������

�

send

	

�
rec

!
!

!
!

!!"

lose d
������#�

lose a

$
$

$$%

τ
������&

�

rec

�
�

�
�

�
�

��'

lose d

����������
τ

��������(
τ

����������
lose d
��������)

lose a
�

�
��'

Fig. 4. The alternating bit protocol with lose d and lose a visible.

4 Use of Context-Sensitive Visibility

The basic idea of our new method is to make chosen actions visible for only a
part of the behaviour of the system. The user specifies this part by choosing
a set of states from the original visualised LTS, that is, the LTS where the
chosen actions are hidden everywhere. An automatic tool then produces an
LTS that is semantically otherwise like the original LTS, but occurrences of
the chosen actions are now visible (at least) in the part that the user selected.

Before we explain the theory and implementation of context-sensitive vis-
ibility in the next section, we illustrate in this section how the user sees it.

4.1 Livelocks in the Protocol

Figure 5 shows the result of making lose d visible in the ordinary sense (that
is, visible everywhere), and lose a visible in the end state of the rec-transition
in Figure 3. To emphasize that not all lose a-transitions are shown, those that
are shown are labelled with lose avis.

The τ -loop at the start state of the rec-transition has been replaced with
a lose d-loop, so the reason for its existence indeed was an infinite number of
losses of messages in Data channel. If only a finite number of messages is lost,
then the system can execute lose d only a finite number of times, and it must
thus eventually execute rec. The τ -loop at the end state of the rec-transition
has been replaced with a loop starting with τ and ending with either lose d
or lose avis. This means that the original τ -loop had two different (although
not mutually exclusive) causes: an infinite number of losses of messages in
Data channel, and an infinite number of losses of messages in Ack channel.

It was thus possible — and actually quite easy — to check from Figure 5
that there are no illegal livelocks. The simplicity of Figure 5 compared to
Figure 4 demonstrates the benefit of context-sensitive visibility.

That Figure 5 has essentially the same structure as Figure 3 is good luck;
the method does not try to preserve the structure. The method tries to make
the resulting LTS small, and it succeeded very well in this example.

209

Valmari, Virtanen, Puhakka

��� �
�����send ��

����
rec

�����
lose d

� �τ
 τ �������#
lose d

�������
lose avis

Fig. 5. The alternating bit protocol with lose d visible everywhere and lose a con-
text-sensitively visible.

The user would no doubt try other combinations before deciding to make
lose d visible everywhere and lose a only in the chosen state. This is not a
problem since, thanks to computer tools, an unsuccessful attempt does not
take much time or effort, and often gives hints for the next attempt.

4.2 Further Analysis

We note from Figure 5 that the state where the lose avis-transition starts is
actually rather curious. When the protocol is in this state, it can continue
only by losing either a data message or an acknowledgement. This suggests
that if the channels were made reliable by removing the lose d-transitions from
Data channel and lose a-transitions from Ack channel, then the protocol could
deadlock.

A more detailed analysis (performed with tools and techniques that are
not a topic of the present article) shows that after executing, for example,
send sd0 rd0 rec τ sd0 τ sa0 rd0 sd0 τ , the protocol is in a situation where each
channel contains a message, and both Sender and Receiver are ready to send
but not ready to receive a message. Sending is not possible, however, because
the channels are already full. Thus the protocol cannot continue before a data
or acknowledgement message is lost by a channel. With reliable channels it
would be in a deadlock.

���
Sender

� �send

�

�
ra1

����� τ
�����)

sd1

$
$

$
$%

ra1

��
��&ra0

�

�
sd1

��
��&ra1

�����
ra0

�

	

sd0

����*
ra0

��
��� ra1

�

	

ra0

����(τ
������

sd0 $
$

$
$+

ra0

��
��� ra1

�

send

Data channel
�
�� �sd0
 sd1��

τ
,
,
,,-

lose d
�����&

�
rd0

$
$

$
$%

�

τ
.
.
../

lose d
������

�
rd1

�
�

�
�'

Ack channel
�

��

�
sa0

sa1

��

τ

.
.
..0

lose a
�����1

�

ra0
�

�
�
�� �

τ

,
,
,,2

lose a
�����#

�

ra1
$

$
$

$+

���
Receiver

� �rd0

�
�
�
��

rd1

��
�
�

��
sa1

�

�
rec

�

	

rec

�
�

�
�
��

sa0

�
 rd1 �
�
�

��
rd0

Fig. 6. The correct alternating bit protocol.

210

Valmari, Virtanen, Puhakka

Alt bit proto
�
�� � �send �

	
τ

lose d

�� �� �
 lose a
��������

τ

lose d

�� ��

�

	
rec

�

�lose a

 τ
lose d

��
���

� �τ
lose d ��

��1

lose a
�� ��3

�

�send

(a)

Alt bit proto
�
�� � �send �

τ

	

lose d

�� ��

�

�

τ

lose d ��
��1

lose avis

�� ��3

�
 rec

(b)

Fig. 7. The behaviour of the correct alternating bit protocol (a) with loss of messages
visible all the time, and (b) with lose a context-sensitively visible.

The above is an example of a subtle error that is easily ignored in ordinary
verification. It is not apparent in Figure 3, because the model of channels we
have used until now is such that if nothing else can happen, then the channel
is guaranteed to lose the message in it, and therefore no deadlock arises. On
the other hand, a reliable channel does not have this nice property of losing
messages when the protocol would otherwise deadlock.

In brief, our model of channels is incorrect in a way that hides an error
in the protocol. Ordinary verification of properties such as “messages are not
duplicated” and “if only a finite number of messages is lost, then each send
is eventually followed by rec” cannot reveal the error, because the system as
a whole has these properties. We found the error because Figure 5 gave us
some information we did not ask for, namely that the protocol has a state
where it may only execute lose d or lose a. This is an example of the ability of
visual verification to point out errors whose possibility is easily ignored when
writing a requirement specification.

To fix the protocol, we add transitions to Sender that consume all unex-
pected messages. We also change the channels such that they can commit
to not lose the message. The fixed protocol is shown in Figure 6, and its
behaviour in Figure 7. The behaviour seems correct. The τ -transitions imme-
diately before the rec-transition might seem surprising: does not Sender keep
on sending data messages until it receives an acknowledgement from Receiver,
which cannot happen before the rec-transition? The answer is that yes, it tries
to do that. However, if the channel decides enough many times (twice, to be
precise) to deliver a message, then eventually a situation is reached where
Sender cannot send any more messages because the data channel is full, while
Receiver is ready for rec.

When we made the same analyses by using data and acknowledgement

211

Valmari, Virtanen, Puhakka

channels of capacity 2 in the protocol, we found that the pictures where lose a
is visible everywhere, Figures 4 and 7 (a), became more complicated, but
the pictures where lose a is context-sensitively visible, Figures 5 and 7 (b),
remained the same. 6

5 Theory of Context-Sensitive Visibility

5.1 Correctness

In this section we will describe how an LTS is made where some action a is
context-sensitively visible, and then formulate and prove two of its properties.
The properties state that the LTS is, in a certain precise sense, “between”
the LTS where a is visible everywhere, and the original LTS where a is hid-
den everywhere. It would suffice for our purposes to state and prove these
properties in terms of CFFD-semantics. In this case, however, it is natural
and easy to prove a much stronger result, namely that the properties hold
also when strong bisimilarity is used in their definition. This implies immedi-
ately the corresponding results for CFFD, because strong bisimilarity implies
CFFD-equivalence, as was mentioned in Section 2.4.

Let us assume that we are analysing the system Sys = hide a in L, where
L can be any (finite) LTS. In a typical case, as in the protocol example above,
L has been constructed through parallel composition from subprocesses and,
after hiding actions (other than a), reduced according to our equivalence. We
would now like to make the action a visible in some states of the system.
Context-sensitive visibility is based on (1) introducing two new action names
avis and ainv that are not in ΣL; (2) constructing a special switch process W
from Sys , avis, ainv and a list of states where a should be visible; and (3) then
producing the following LTS:

Csv = hide ainv in (W ‖ L[{avis, ainv}/a])

We will describe the actual construction of W in the next section. In this
section we will formulate and prove the correctness of Csv . To do that we need
to know that W has certain special properties. These properties are listed in
the next definition, which says that the alphabet of W is obtained by adding
avis and ainv to the alphabet of Sys ; each trace of the original LTS leads to
precisely one state of W ; W does not have τ -transitions; each state has either
an avis- or an ainv-transition to itself, but not both; and there are no other avis-
or ainv-transitions.

Definition 5.1 Let L be an LTS with ΣL as its alphabet, and let a ∈ ΣL, but
avis /∈ ΣL and ainv /∈ ΣL. Let Sys = hide a in L. An LTS (SW , ΣW , ∆W , ŝW)
is a switch for L and a if and only if

6 We thank the anonymous referees for the idea of trying the case study with increased
channel capacities.

212

Valmari, Virtanen, Puhakka

�� �,
b
./

.
a/τ

,2
�b �

.
a/τ

,2
�c �

(a)

�� �
.

ainv
,2

�b �,
b
./

.
avis

,2
�c �

.
ainv

,2

(b)

�� �
.
τ
,2
4

4
4

b
5

5
56�b �,

b
./

.
avis

,2
�b �

.
avis

,2
�c �

(c)

Fig. 8. (a) An example L/Sys (a-transitions/τ -transitions), (b) a corresponding W ,
and (c) the corresponding Csv

• ΣW = ΣSys ∪ {avis, ainv}
• ∀σ ∈ Tr(Sys) : ∃sσ ∈ SW : ŝW =σ⇒ sσ.

Furthermore, if ŝW =σ⇒ s1 and ŝW =σ⇒ s2, then s1 = s2.

• ∀s ∈ SW : ¬(s −τ→)

• ∀s ∈ SW : (s −avis→ s ∨ s −ainv→ s) ∧ ¬(s −avis→ ∧ s −ainv→)

• ∀s, s′ ∈ SW : s −avis→ s′ ∨ s −ainv→ s′ ⇒ s′ = s

The first correctness criterion says that if we hide again what has been
made context-sensitively visible, then what we get is CFFD-equivalent to the
original Sys . In fact, it is strongly bisimilar.

Theorem 5.2 hide avis in Csv �sb Sys

Proof. The claim is hide avis in hide ainv in (W ‖ L[{avis, ainv}/a]) �sb

hide a in L. Let Sys ′ = hide avis in Csv . By Definitions 2.3, 2.4, 2.6 and 5.1
we see that ΣSys′ = ΣW ∪ ΣL[{avis,ainv}/a] − {ainv} − {avis} = ΣSys ∪ {avis, ainv} ∪
(ΣL−{a})∪{avis, ainv}−{avis, ainv} = ΣSys ∪ (ΣL−{a}) = ΣSys . Furthermore,
Sys has the same states as L, and the states of Sys ′ are of the form (sW , sL),
where sW is a state of W and sL is a state of L. Let “∼” ⊆ SSys′ × SSys be
the relation such that (sW , sL1) ∼ sL2 holds if and only if sL1 = sL2. Clearly,
ŝSys′ ∼ ŝSys . The τ -transitions of L on either side simulate each other, and
whatever else L can do, W can participate in it, either because of its avis-
and ainv-transitions or because of the existence of the unique states sσ for
each trace σ of Sys = hide a in L. Furthermore, all transitions of W are
participated by L. Thus, both processes can simulate every transition of the
other process, which proves that the relation is a strong bisimulation. �

A natural next claim could be that Csv — or a process strongly bisimilar to
it — can be obtained by converting some a-transitions of L to avis-transitions,
and the remaining a-transitions to τ -transitions. This is not true, however,
as the example in Figure 8 demonstrates. We want to make a visible at the
middle state of Sys in Figure 8 (a), and invisible elsewhere. However, if the
first a-transition of L is converted to τ , then no state of the result can execute
both b and avis, so no state can simulate the second state of Csv in Figure 8
(c). On the other hand, if the first a-transition is converted to avis, then the
result cannot simulate the initial τ -transition of Csv .

213

Valmari, Virtanen, Puhakka

What is true, however, is that there is an LTS that is strongly bisimilar to
L, and from which Csv can be obtained by renaming and hiding a-transitions.

Theorem 5.3 Let L′ = (W ‖ L[{avis, ainv}/a])[{a}/avis][{a}/ainv].

• Csv can be obtained from L′ by hiding some a-transitions, and renaming
the remaining a-transitions to avis.

• L′ �sb L

Proof. The first claim follows directly from the definitions, if we hide those
a-transitions that were created from ainv-transitions with the “[{a}/ainv]”-
operator, and rename the remaining a-transitions to avis. A proof of the second
claim is obtained from the proof of Theorem 5.2 by replacing L′ and L for Sys ′

and Sys , respectively, and making trivial changes to the formulae giving the
alphabets and to the labels of transitions that originate from a-transitions of
L. �

5.2 Constructing the Switch

Let Svis ⊆ SSys be the set of the states of Sys where the user wanted a to
be visible. For every σ ∈ Σ∗

Sys let sσ = {s ∈ SSys | ŝSys =σ⇒ s}. Intuitively,
the switch W is obtained from Sys by converting it to a deterministic LTS,
and adding to each state an avis- or ainv-loop depending on whether the user
wanted a to be visible in any original state contained in the deterministic state.
The idea of the loops is that while the switch process remains in this state,
it allows the target process to execute freely the chosen action but blocks it
from executing the alternative action. Formally, the switch W is the following
LTS:

• SW = { sσ | σ ∈ Tr(Sys) }
• ΣW = ΣSys ∪ {avis, ainv}
• ∆W = { (sσ, b, sσb) | σb ∈ Tr(Sys) } ∪ { (sσ, avis, sσ) | sσ ∩ Svis
= ∅ } ∪

{ (sσ, ainv, sσ) | sσ ∩ Svis = ∅ }
• ŝW = sε

Sys is made deterministic with the well-known subset construction that can
be found in any textbook on finite automata or compilers, for example [9,1].
It is important to notice that despite the subset construction this operation
is not costly, because we are not using the complete state space of the system
but the abstracted, reduced version that in any case has to be small enough
for visual verification.

It is possible that sσ contains a state from Svis and another state from
outside Svis. In that case, W may make a visible even if Sys is in a state
where the user did not request a to be visible. The visibility of a depends
only on the trace executed by Sys so far. This is the sense mentioned in the
introduction in which our new method may show more than the user asked

214

Valmari, Virtanen, Puhakka

��� � �send

�����
lose ainv

�������1
rec

�����
lose ainv

��������
send �����

lose avis

Fig. 9. The switch process.

for. The user can never lose any information, but the final LTS can become
larger than would be absolutely necessary.

The switch used in the protocol example is shown in Figure 9.

6 Conclusions

We presented a method for making an action visible in some parts of an LTS
and invisible in other parts. The method is based on duplicating the action in
question into a visible and invisible version, and constructing a special switch
process that chooses which version of the action may occur. The invisible
version is then hidden, and the visible version is shown.

As the example in this paper demonstrates, context-sensitive visibility can
improve visual verification. It reduces the size of the LTS that is shown, while
still providing the information that the user wanted.

The implementation of context-sensitive visibility is not at all difficult.
Multiple renaming and the adding of self-loop transitions are straightforward
operations, and hiding, parallel composition and determinisation already exist
in many LTS manipulation tools, including ARA. The method is also compu-
tationally cheap, because it is performed on an abstracted, reduced version of
the system instead of the complete state space.

The method can perhaps be improved by minimising the switch before
use. This issue is not trivial, however, because the last two conditions of
Definition 5.1 are not preserved by strong bisimilarity. Another hypothesis
is that the method can be used to make several actions context-sensitively
visible simultaneously. We plan to investigate these hypotheses in the future.

Acknowledgements

The work of A. Puhakka was funded in part by the Academy of Finland.

References

[1] Aho, A. V., Sethi, R. & Ullman, J. D.: Compilers — Principles, Techniques,
and Tools. Addison-Wesley 1986, 796 p.

[2] Bolognesi, T. & Brinksma, E.: “Introduction to the ISO Specification Language
LOTOS”. Computer Networks and ISDN Systems 14, 1987, pp. 25-59.

215

Valmari, Virtanen, Puhakka

[3] Braun, V., Margaria, T., Steffen, B. & Yoo, H.: “Automatic Error Location
for IN Service Definition”. Services and Visualization: Towards User-Friendly
Design, Lecture Notes in Computer Science 1385, Springer-Verlag 1998, pp.
190–207.

[4] Bartlett, K. A., Scantlebury, R. A. & Wilkinson, P. T.: “A Note on Reliable Full-
Duplex Transmission over Half-Duplex Links”. Communications of the ACM 12
(5) 1969, pp. 260–261.

[5] Hoare, C. A. R.: Communicating Sequential Processes. Prentice-Hall 1985,
256 p.

[6] Kaivola, R. & Valmari, A.: “The Weakest Compositional Semantic Equivalence
Preserving Nexttime-less Linear Temporal Logic”. Proceedings of CONCUR
’92, Third International Conference on Concurrency Theory, Lecture Notes in
Computer Science 630, Springer-Verlag 1992, pp. 207–221.

[7] Karsisto, K. & Valmari, A.: “Verification-Driven Development of a Collision-
Avoidance Protocol for the Ethernet”. Proceedings of Formal Techniques in
Real-Time and Fault Tolerant Systems, Lecture Notes in Computer Science
1135, Springer-Verlag 1996, pp. 228–245.

[8] Kervinen, A., Valmari, A. & Järnström, R.: “Debugging a Real-life Protocol
with CFFD-Based Verification Tools”. Proceedings of FMICS 2001, 6th
International Workshop on Formal Methods for Industrial Critical Systems,
pp. 13–27.

[9] Lewis, H. R. & Papadimitriou, C. H.: Elements of the Theory of Computation.
Prentice-Hall 1998, 361 p.

[10] Park, D.: “Concurrency and Automata on Infinite Sequences”. Theoretical
Computer Science: 5th GI-Conference, Lecture Notes in Computer Science 104,
Springer-Verlag 1981, pp. 167–183.

[11] Roscoe, A. W.: The Theory and Practice of Concurrency. Prentice-Hall 1998,
565 p.

[12] Valmari, A.: “The State Explosion Problem”. Lectures on Petri Nets I: Basic
Models, Lecture Notes in Computer Science 1491, Springer-Verlag 1998, pp.
429–528.

[13] Valmari, A., Karsisto, K. & Setälä, M.: “Visualisation of Reduced Abstracted
Behaviour as a Design Tool”. Proceedings of PDP’96, the Fourth Euromicro
Workshop on Parallel and Distributed Processing, IEEE Computer Society
Press, pp. 187–194.

[14] Valmari, A., Kemppainen, J., Clegg, M. & Levanto, M.: “Putting Advanced
Reachability Analysis Techniques Together: the ARA Tool”. Proceedings of
Formal Methods Europe ’93: Industrial-Strength Formal Methods, Lecture Notes
in Computer Science 670, Springer-Verlag 1993, pp. 597–616.

216

Valmari, Virtanen, Puhakka

[15] Valmari, A. & Kokkarinen, I.: “Unbounded Verification Results by Finite-State
Compositional Techniques: 10any States and Beyond”. Proceeding of the 1998
International Conference on Application of Concurrency to System Design,
Aizu-Wakamatsu, Fukushima, Japan, March 1998, IEEE Computer Society,
pp. 75–85.

[16] Valmari, A. & Setälä, M.: “Visual Verification of Safety and Liveness”.
Proceedings of Formal Methods Europe ’96: Industrial Benefit and Advances
in Formal Methods, Lecture Notes in Computer Science 1051, Springer-Verlag
1996, pp. 228–247.

[17] Valmari, A. & Tienari, M.: “Compositional Failure-Based Semantic Models for
Basic LOTOS”. Formal Aspects of Computing (1995) 7: 440–468.

217

	7th International ERCIM Workshop on Formal Methods for Industrial Critical Systems(FMICS’02)

