
New Developments
around the µCRL Tool Set

Stefan Blom, Jan Friso Groote

Izak van Langevelde, Bert Lisser
Jaco van de Pol

Centrum voor Wiskunde en Informatica

Specification and Analysis of Embedded Systems

Theme leader: Wan Fokkink

Amsterdam, The Netherlands

O V E R V I E W
• Introduction

• Symbolic verification

– Linear processes, Static Analysis

– Confluence

– Symbolic Model Checking

• Explicit state verification

– Distributed implementation

– On-the-fly via Open/Cæsar

– Visualization

• Some Applications

Jaco van de Pol FMICS, June 2003 – 2

µCRL Tool Set

type checking
well−formedness

Linear process

LTS

Optimization
Linearization

Generation
Minimization

visualization
simulation

model checking
equivalence checking

control flow analysis
invariants
simulation

confluence
symbolic model checking

CRLµ

Jaco van de Pol FMICS, June 2003 – 3

µCRL = process algebra + abstract data types

µCRL inherits from abstract data types:

• sorts . Nat, List, Bool

• function symbols .and: Bool × Bool → Bool

• equations . length(cons(x,l)) = succ(length(l))

µCRL inherits from ACP style process algebra :

• atomic actions with synchronizationread | write = comm

• abstraction, encapsulation, renaming . τ, δ, · · ·

• process operators .+, ·, ||

• recursive process equations X = a.c.X + b.X

Jaco van de Pol FMICS, June 2003 – 4

µCRL = · · · + integration

µCRL provides connections between data and processes:

atomic actions have data labels: send(frame(x , y))

conditions on data: finish / empty(buffer) . continue

choice over data:
∑

x:Nat rd(x).wr(Suc(x))

parameterized recursion: .

X(prev : Nat) =
∑

next:Nat

read(next).send(prev).X(next)

Jaco van de Pol FMICS, June 2003 – 5

Outline of our Verification Process

Analysis

Compilation

Generation

Optimization

System specification

Intermediate symbolic format

Finite state space

Facts

On the fly reduction

Jaco van de Pol FMICS, June 2003 – 6

Optimizations

Various optimizations are implemented

• Compiler techniques (control + data flow analysis)

– replace unchanged variables by constants

– remove variables that are not used

– reset variables when temporarily not used

• Automated theorem prover based

– invariant generation/checking

– reachability analysis

– Partial-order-like reduction based on

∗ Confluence detection (static)

∗ Confluence-based state space reduction (on-the-fly)

Jaco van de Pol FMICS, June 2003 – 7

Linear process format

X(d : D) =
∑

e1:E

c1(d, e1) ⇒ a1(d, e1).X(g1(d, e1))

+ · · ·

+
∑

en:E

cn(d, en)⇒ an(d, en).X(gn(d, en))

• d is a vector of state variables

• ei is the vector of local variables for summand i

• ci is the enabling condition for summand i

• ai is the (visible/invisible) actions for summand i

• gi is the next-state function for summand i

X(d) a−→ X(d′) iff for some i,

∃ei. ci(d, ei) ∧ d
′ = gi(d, ei) ∧ a = ai(d, ei)

Jaco van de Pol FMICS, June 2003 – 8

Example: linearization of lossy channel

K(a : Nat) = 0

∑

d

in(a, d) ·1
(

τ ·2 loss+ τ ·3 out(a, d)
)

·0 K(a)

K(17) is linearized by introducing a program counter:

proc K(a, x, pc) =
∑

d pc = 0⇒ in(a, d) ·K(a, d, 1)

+ pc = 1⇒ τ ·K(a, x, 2)

+ pc = 1⇒ τ ·K(a, x, 3)

+ pc = 2⇒ loss ·K(a, x, 0)

+ pc = 3⇒ out(a, x) ·K(a, x, 0)

init K(17,⊥, 0)

Parallel composition and hiding can be defined directly on linear

processes. In practice, no problematic blow-up occurs.

Jaco van de Pol FMICS, June 2003 – 9

Example: linearization of lossy channel

K(a : Nat) = 0

∑

d

in(a, d) ·1
(

τ ·2 loss+ τ ·3 out(a, d)
)

·0 K(a)

K(17) is linearized by introducing a program counter:

proc K(a, x, pc) =
∑

d pc = 0⇒ in(a, d) ·K(a, d, 1)

+ pc = 1⇒ τ ·K(a, x, 2)

+ pc = 1⇒ τ ·K(a, x, 3)

+ pc = 2⇒ loss ·K(a, x, 0)

+ pc = 3⇒ out(a, x) ·K(a, x, 0)

init K(17,⊥, 0)

Parallel composition and hiding are defined directly on linear processes.

In practice, no problematic blow-up occurs.

Jaco van de Pol FMICS, June 2003 – 10

Example: linearization of lossy channel

K(a : Nat) = 0

∑

d

in(a, d) ·1
(

τ ·2 loss+ τ ·3 out(a, d)
)

·0 K(a)

The linear process can be optimized in various places:

proc K(a, x, pc) =
∑

d pc = 0⇒ in(a, d) ·K(a, d, 1)

+ pc = 1⇒ τ ·K(a, x, 2)

+ pc = 1⇒ τ ·K(a, x, 3)

+ pc = 2⇒ loss ·K(a, x, 0)

+ pc = 3⇒ out(a, x) ·K(a, x, 0)

init K(17,⊥, 0)

Parallel composition and hiding can be defined directly on linear

processes. In practice, no problematic blow-up occurs.

Jaco van de Pol FMICS, June 2003 – 11

Example: linearization of lossy channel

K(a : Nat) = 0

∑

d

in(a, d) ·1
(

τ ·2 loss+ τ ·3 out(a, d)
)

·0 K(a)

The optimized linear process will be:

proc K(a,x, pc) =
∑

d pc = 0⇒ in(17, d) ·K(a,d, 1)

+ pc = 1⇒ τ ·K(a,⊥, 2)

+ pc = 1⇒ τ ·K(a,x, 3)

+ pc = 2⇒ loss ·K(a,⊥, 0)

+ pc = 3⇒ out(17, x) ·K(a,⊥, 0)

init K(17,⊥, 0)

Parallel composition and hiding can be defined directly on linear

processes. In practice, no problematic blow-up occurs.

Jaco van de Pol FMICS, June 2003 – 12

Correctness of static analysis tools

• most optimization tools yield state mappings on LPOs

• state mappings on LPOs yield functional bisimulations on LTSs

• invariants can be used to verify state mappings

• state mappings preserve invariants (in two directions)

• the Focus and Cones method provides matching criteria to prove

that two linear processes are branching bisimilar

• LPO meta-theory has been completely verified in PVS

• mcrl2pvs: individual specifications can be translated to PVS

automatically, and verified by interactive theorem proving

Jaco van de Pol FMICS, June 2003 – 13

State Space Reduction by Confluence

An LTS can be reduced, by exploiting confluence properties.

strong

state space reduction:

commutation:

τ a

a τ

b
a

τ

τ

b

τ a

c

We will study subsets ©τ−−→ ⊆ τ−−→.

Jaco van de Pol FMICS, June 2003 – 14

Confluence Notions
©τ−−→ ⊆ τ−−→ is step/reduce confluent in an LTS iff:

©τ

a aSC

©τ

©τ

a aRC

©τ

Note: SC ⇒ RC

Jaco van de Pol FMICS, June 2003 – 15

Reduction based on Confluence Information

A representation map replaces each state by its representative, which

must be unique in the final strongly connected components.

−→ is a visible step, −→ are ©τ−−→ steps.

Representation maps can be computed on-the-fly by an adaptation of

Tarjan’s algorithm.

Theorem: if ©τ−−→ is RC and φ is a representation map, then L↔b Lφ.

Jaco van de Pol FMICS, June 2003 – 16

Confluence detection on LPO

• Mark all τ -summands that commute with all other summands.

• Invariants can be used to prove commutation.

• ©τ−−→ := the transitions generated from marked τ -summands.

• Then ©τ−−→ is an SC, and hence RC, subset of τ−−→, so it can be used

for on-the-fly reduction.

• Confluence marking is preserved by state mappings

• All meta-theory on confluence has been verified in PVS.

Jaco van de Pol FMICS, June 2003 – 17

Confluence Formula Generation

∑

ea

ca(d, ea)⇒ a(d, ea).X(ga(d, ea))

∑

eτ

cτ (d, eτ)⇒ τ.X(gτ (d, eτ))

The commutation formula for this (a, τ)-pair is:

∀d, ea, eτ . ca(d, ea) ∧ cτ (d, eτ) →

cτ (ga(d, ea), eτ)

∧ ca(gτ (d, eτ), eτ)

∧ a(d, ea) = a(gτ (d, eτ), ea)

∧ ga(gτ (d, eτ), ea) = gτ (ga(d, ea), eτ)

Jaco van de Pol FMICS, June 2003 – 18

Special-purpose theorem prover

• The µCRL toolset comes with a special-purpose automated

theorem prover.

• It handles q.f.f. Boolean formulas over an abstract data type.

• It is based on EQ-BDDs, an extension of BDDs with equations

and function symbols (Groote, vdP).

• Other applications are:

– inductive invariant checking

– removal of “dead” summands

– enhance static analysis tools

– Future: check user provided state mappings

Jaco van de Pol FMICS, June 2003 – 19

Very Recent Developments

• Symbolic Model Checking on LPO [Groote, Willemse]

– handles regular µ-calculus with data and quantifiers

– applies directly to LPOs (possibly infinite state spaces)

– transformed to Boolean equation systems with data parameters

[Groote, Mateescu]

– solved by equational binary decision diagrams

• Abstract interpretation of LPO [Valero, JvdP]

– based on abstraction of data domains.

– results in a Modal LPO, containing may/must transitions.

– yields under/over approximations, using 3-valued logic.

• Symmetry Reduction [van Langevelde]

Jaco van de Pol FMICS, June 2003 – 20

Outline of our Verification Process

Analysis

Compilation

Generation

Optimization

System specification

Intermediate symbolic format

Finite state space

Facts

On the fly reduction

Jaco van de Pol FMICS, June 2003 – 21

State Space Generation and Analysis

(this is only possible for finite state spaces)

• Explicit LTS Generation from a linear process

(narrowing-like technique to solve
∑

over infinite domains)

• Distributed implementations [Blom, Orzan]

– state space generation (in files Si, Tij)

– strong bisimulation minimization

– branching bisimulation minimization

• Open/Cæsar interface is implemented.

– on-the-fly analysis of µCRL specs by CADP toolset

– model checking, equivalence checking, visualization . . .

• Visualization of state space of > 106 nodes [Groote, van Ham]

Jaco van de Pol FMICS, June 2003 – 22

Protocols and Distributed Algorithms

• Sliding Window Protocol

• Leader Election Protocol [Dolev,Klaw,Rodeh]

• Cache Coherence Protocol for Java Distributed Memory Model

• Failure recovery algorithms for Telecom [Arts, Benac Earle]

• IEEE 1394.1 Firewire Busbridges Standardization

1394 serial bus
Bus bridges

Home devices

Jaco van de Pol FMICS, June 2003 – 23

Embedded Systems
Move up

Move down

• Truck lift controllers built by Add-controls

• In-flight Data-acquisition Unit for Lynx helicopter [RNLN, NLR]

• Avionics Control Systems [Moscow State Univ., RedLab Ltd.]

• Safety of railroad tracks (Euris specifications)

AS

101/ 1a
XbNaXa

Nb

Xb

Xb
101/ 1b

AS
Na Xb

AM

101/ 14
Na Xb

14
Nb

Na

Xa Na

Xa

12B

Nb

XbNa
12A

Xa

11

Na

Nc

Xc

Xb

Nb

Nb

101/ 12

AMXaNb

XbXa

Na

12

Jaco van de Pol FMICS, June 2003 – 24

Shared Dataspace Architectures

• JavaSpacestm Distributed Applications [Sun Microsystems]

– read/write/take on a global shared object space

– transactions, notification events, resource leasing

– dining philosophers, termination detection, parallel summation

• Splice Coordination Architecture [Thales]

– Real-time distributed databases with replicated data

– Publish/subscribe mechanism for loosely coupled components

– Verification question: transparent replication of software

components

Jaco van de Pol FMICS, June 2003 – 25

Replication in Splice

input output

Input Output

input output
write

DB DB

Network

AgentAgent

Producer Consumer

write read

Transformer

read

Replication

Network layer

Application layer

Splice layer

Jaco van de Pol FMICS, June 2003 – 26

O V E R V I E W
• Introduction

• Symbolic verification

– Static Analysis yields state mappings

– Confluence for state space reduction

– Symbolic Model Checking

• Explicit state verification

– Distributed implementation

– On-the-fly via Open/Cæsar

– Visualization

• Some Applications

Jaco van de Pol FMICS, June 2003 – 27

Conclusion

• LPO format contributes to modularity of the tool set

• Methodological integration of symbolic, on-the-fly and explicit

state analysis

• Combination of interactive (PVS) and automated theorem proving

(EQ-BDDs), symbolic and explicit state model checking.

• Meta-theory is completely verified in PVS

• In principle, an individual verification in the tool set could be

mapped onto PVS, for a “second opinion”

Jaco van de Pol FMICS, June 2003 – 28

